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Class Action Items

• Lab 3 is due today/tomorrow, if you need to use a slip week, please send us a private 
message on Ed. You can do this up until the deadline.


• Lab 4 starts today, at the end of this lab you will have a fully-integrated RC car, and we 
will start thinking about programming simple control strategies!

• Good example from last year: https://nila-n.github.io/Lab4.html

• Note about battery connector.


• Grades for Lab 1 and Lab 2 were posted yesterday/ later today, let us know if you have 
any questions.

• One thing I will note is that your website serves as a public repository of information, 

you should write enough text so that we can understand what you worked on (there 
were a couple examples of videos with no description).
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https://nila-n.github.io/Lab4.html


Linear Systems

• Linear systems review


• Eigenvectors and eigenvalues


• Stability


• Discrete time systems


• Linearizing nonlinear systems


• Controllability


• Observability
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·x = Ax+Bu

These should look familiar from:


• MATH2940 Linear Algebra


• ECE3250 Signals and Systems


• ECE5210 Theory of Linear Systems


• MAE3260 System Dynamics


• and many others…Based on “Control Bootcamp”, Steve Brunton, UW

https://www.youtube.com/watch?v=Pi7l8mMjYVE 

https://www.youtube.com/watch?v=Pi7l8mMjYVE


Linear Systems Review
• Linear system:  


• Solution: 


• Eigenvectors: 


•
Eigenvalues: 


• Linear Transform: 


• Solution: 


• Mapping from x to z to x: 


• Stability in continuous time: , stable iff 

·x = Ax

x(t) = eAtx(0)

T = [ξ1 ξ2 . . . ξn]

D =

λ1

λ2
⋱

λn

AT = TD

eAt = eTDT−1t

x(t) = TeDtT−1x(0)

λ = a + ib a < 0
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• Discrete time: , where 


• Stability in discrete time: , stable iff 


• Nonlinear systems: 


• Linearization: 

x(k + 1) = Ãx(k) Ã = eAΔt

λ̃n = Rneinθ R < 1

·x = f(x)

Df
Dx x̄

>>[T,D] = eig(A)
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These should look familiar from:


• MATH2940 Linear Algebra


• ECE3250 Signals and Systems


• ECE5210 Theory of Linear Systems
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x=[𝜃
𝜃̇]

https://www.youtube.com/watch?v=Pi7l8mMjYVE


Linearizing Nonlinear Systems
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Basic steps to linearize nonlinear systems

• Find some fixed points

•  


• Linearize about them


•  “Jacobian”


• If you zoom in on , your system 
will look linear!


• Good control will keep you near 
the fixed point, where the model 
is valid!

x̄ st f(x̄) = 0

Df
Dx x̄

= [ δfi
δxj ]

x̄
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·x = Ax

·(x − x̄) = f(x̄) +
Df
Dx x̄

(x − x̄) +
D2f
D2x x̄

(x − x̄)2 +
D3f
D3x x̄

(x − x̄)3 + …
0

<<1

Δ ·x =
Df
Dx x̄

(Δx) Δ ·x = AΔx

Vector field of 
the dynamics

·x = f(x)

x̄

(x − x̄) = Δx



Basic steps to linearize nonlinear systems

• Find some fixed points

•  


• Linearize about them


•  “Jacobian”

x̄ st f(x̄) = 0

Df
Dx x̄

= [ δfi
δxj ]

Fast Robots 2025

·x = f(x) ·x = Ax

Intuitively, you know:

• Stable point

• Eigenvalues

• Complex poles

• Unstable point



Basic steps to linearize nonlinear systems

• Find some fixed points

•  


• Linearize about them


•  “Jacobian”

x̄ st f(x̄) = 0

Df
Dx x̄

= [ δfi
δxj ]
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·x = f(x) ·x = Ax

Equations of motion


• 


• 


• 


• Point mass inertia: 


• 


•

τ = − mgL sin(θ)
τ = I··θ
I··θ = − mgL sin(θ)

I = mL2

mL2··θ = − mgL sin(θ)
··θ = −

g
L

sin(θ) − δ ·θ
θ

m

L

g friction



Basic steps to linearize nonlinear systems

• Find some fixed points

•  


• Linearize about them


•  “Jacobian”

x̄ st f(x̄) = 0

Df
Dx x̄

= [ δfi
δxj ]
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·x = f(x) ·x = Ax

··θ = −
g
L

sin(θ) − δ ·θ

θ
m

L

g

d
dt [x1

x2] = [ x2

−sin(x1) − δx2]

x = [x1
x2] = [θ

·θ]

Find our fixed points:


• 


•

d
dt [x1

x2] = [ x2

−sin(x1) − δx2] = 0

[x̄1
x̄2] = [0, π

0 ] These points have 
physical meaning!

g
L

= 1 Just simplifies 
constants



Basic steps to linearize nonlinear systems

• Find some fixed points

•  


• Linearize about them


•  “Jacobian”

x̄ st f(x̄) = 0

Df
Dx x̄

= [ δfi
δxj ]
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·x = f(x) ·x = Ax

θ
m

L

g

d
dt [x1

x2] = [ x2

−sin(x1) − δx2]
x̄ = [0, π

0 ]

x = [x1
x2] = [θ

·θ]

Df
Dx

=

δf1
δx1

δf1
δx2

δf2
δx1

δf2
δx2

= [ 0 1
−cos(x1) −δ]

Adown =
Df
Dx x̄=[0,0]

= [ 0 1
−1 −δ]

Aup =
Df
Dx x̄=[π,0]

= [0 1
1 −δ]

··θ = −
g
L

sin(θ) − δ ·θ
g
L

= 1



Basic steps to linearize nonlinear systems

• Find some fixed points

•  


• Linearize about them


•  “Jacobian”

x̄ st f(x̄) = 0

Df
Dx x̄

= [ δfi
δxj ]
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·x = f(x) ·x = Ax

θ
m

L

g

Adown =
Df
Dx x̄=[0,0]

= [ 0 1
−1 −δ]

Aup =
Df
Dx x̄=[π,0]

= [0 1
1 −δ]

λdown = − δ′￼± i

λup = ± 1

stable

unstable

Vector field of 
the dynamics

x̄

(x − x̄) = Δx



Controllability
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Controllability

• Is the system controllable?


• How do we design the control law, u?

·x = Ax + Bu
System

−Kx

y = xu

·x = Ax + Bu

Fast Robots 2025

x ∈ ℝn

A ∈ ℝn×m

u ∈ ℝq

B ∈ ℝn×q

A linear controller (K matrix) can be optimal for linear systems!

“full state feedback”
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• How do we design the control law, u?
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·x = Ax − BKx
·x = (A − BK)x

x ∈ ℝn

A ∈ ℝn×m

u ∈ ℝq

B ∈ ℝn×qNew dynamics

A linear controller (K matrix) can be optimal for linear systems!

“full state feedback”



Controllability

• A system is controllable if you can steer 
your state  anywhere you want in x ℝn

·x = Ax + Bu
System

−Kx

y = xu

·x = Ax + Bu
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·x = Ax − BKx
·x = (A − BK)x

x ∈ ℝn

A ∈ ℝn×m

u ∈ ℝq

B ∈ ℝn×qNew dynamics

A linear controller (K matrix) can be optimal for linear systems!

“full state feedback”



Controllability

• A system is controllable if you can steer 
your state  anywhere you want in x ℝn

·x = Ax + Bu
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·x = Ax − BKx
·x = (A − BK)x

x ∈ ℝn

A ∈ ℝn×m

u ∈ ℝq

B ∈ ℝn×qNew dynamics

Often, you don’t get to choose A or B



Controllability

• A system is controllable if you can steer 
your state  anywhere you want in 


• Matlab >> rank(ctrb(A,B))

x ℝn

·x = Ax + Bu
System

−Kx

y = xu

·x = Ax + Bu
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·x = Ax − BKx
·x = (A − BK)x

x ∈ ℝn

A ∈ ℝn×m

u ∈ ℝq

B ∈ ℝn×qNew dynamics

A linear controller (K matrix) can be optimal for linear systems!

“full state feedback”



Controllability

• Can you control this system?


• 


• There’s no way to directly/ indirectly affect 


• What could you change to make it controllable?


• Add more control authority!


•

[
·x1
·x2] = [1 0

0 2] [x1
x2] + [0

1] u

x1

[
·x1
·x2] = [1 0

0 2] [x1
x2] + [1 0

0 1] [u1
u2]

·x = Ax + Bu

Fast Robots 2025

·x = Ax − BKx
·x = (A − BK)x

x ∈ ℝn

A ∈ ℝn×m

u ∈ ℝq

B ∈ ℝn×qNew dynamics
Uncontrollable

Controllable



Controllability

• Can you control this system?


• 


• 


• 


• Controllability matrix


• Matlab >>ctrb(A,B)


• 


• The system is controllable iff 

[
·x1
·x2] = [1 0

0 2] [x1
x2] + [0

1] u

[
·x1
·x2] = [1 0

0 2] [x1
x2] + [1 0

0 1] [u1
u2]

[
·x1
·x2] = [1 1

0 2] [x1
x2] + [0

1] u

ℂ = [B AB A2B … An−1B]
rank(ℂ) = n

·x = Ax + Bu
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·x = Ax − BKx
·x = (A − BK)x

x ∈ ℝn

A ∈ ℝn×m

u ∈ ℝq

B ∈ ℝn×qNew dynamics
Uncontrollable

Controllable

Controllable

FYI! Just because a linearized, nonlinear  
system is uncontrollable, it can still be  
nonlinearly controllable!



Controllability in Discrete Time

• Why does  predict controllability?


• Discrete time impulse response: 

ℂ
x(k + 1) = Ãx(k) + B̃u(k)

·x = Ax + Bu

Fast Robots 2025

x ∈ ℝn

If the system is controllable, then the  
impulse response affects every state  
in ℝn

ℂ = [B AB A2B … An−1B]

u(0) = 1
u(1) = 0

u(3) = 0

u(m) = 0
⋮

u(2) = 0

x(0) = 0
x(1) = Ãx(0) + B̃u(0) = B̃
x(2) = Ãx(1) + B̃u(1) = ÃB̃
x(3) = Ã2B̃

⋮
x(m) = Ãm−1B̃

(assume a single input actuator)



Review
• Linear system:  


• Solution: 


• Eigenvectors: 


•
Eigenvalues: 


• Linear Transform: 


• Solution: 


• Mapping from x to z to x: 


• Stability in continuous time: , stable iff 

·x = Ax

x(t) = eAtx(0)

T = [ξ1 ξ2 . . . ξn]

D =

λ1

λ2
⋱

λn

AT = TD

eAt = eTDT−1t

x(t) = TeDtT−1x(0)

λ = a + ib a < 0
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• Discrete time: , where 


• Stability in discrete time: , stable iff 


• Nonlinear systems: 


• Linearization: 


• Controllability: 

x(k + 1) = Ãx(k) Ã = eAΔt

λ̃n = Rneinθ R < 1

·x = f(x)

Df
Dx x̄

·x = (A − BK)x>>[T,D] = eig(A) >>rank(ctrb(A,B))



Reachability
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Controllability and Reachability

• The system is controllable


• iff 

• You can choose K to arbitrarily place the eigenvalues of your closed loop system


• 


• You can reach anywhere in  in a finite amount of time and energy


•

rank(ℂ) = n

·x = (A + BK)x
ℝn

ℛt = ℝn

·x = Ax + Bu
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x ∈ ℝn

ℂ = [B AB A2B … An−1B]

• : states that are reachable at time 


•  for which there is an input 
 that makes 

ℛt t
ℛt = ξ ∈ ℝn

u(t) x(t) = ξ

Reachability

Equivalences



Controllability and Reachability

• The system is controllable


• iff 

• You can choose K to arbitrarily place the eigenvalues of your closed loop system


• 


• You can reach anywhere in  in a finite amount of time and energy


•

rank(ℂ) = n

·x = (A + BK)x
ℝn

ℛt = ℝn

·x = Ax + Bu
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x ∈ ℝn

ℂ = [B AB A2B … An−1B]

• : states that are reachable at time 


•  for which there is an input 
 that makes 

ℛt t
ℛt = ξ ∈ ℝn

u(t) x(t) = ξ

Reachability

Equivalences

ℝ3

𝜉
If the point is reachable, 
any point in that direction 
is reachable

>>K = scipy.signal.place_poles(A, B, poles)



Controllability Gramians
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Controllability Gramians

• We can test if the system is controllable


• … but not how easy it is to control


• … or which directions are the easiest


• … or how we could best improve our control authority

Fast Robots 2025



Controllability Gramians

• 


• Controllability Gramian


• 


• Discrete time


• 


•

x(t) = eAtx(0) + ∫
t

0
eA(t−τ)Bu(τ)dτ

Wt = ∫
t

0
eAτBBTeATτdτ

Wt ≈ ℂℂT

Wtξ = λξ

Fast Robots 2025

·x = Ax + Bu x ∈ ℝn

ℂ = [B AB A2B … An−1B]
>>rank(ctrb(A,B)) 

>>[U, S, V] = svd(C, ‘econ’)

Wt ∈ ℝn×n The SVD of A takes the form:  
 = left singular vector 
 = right singular vector 
 = diagonal matrix of singular values

A = UΣVT

U
V
Σ

The eigenvectors with the biggest eigenvalues of the 
controllability gramian are also the most controllable directions in 
state space!



Controllability Gramians

• 


• Controllability Gramian


• 


• Discrete time


• 


•

x(t) = eAtx(0) + ∫
t

0
eA(t−τ)Bu(τ)dτ

Wt = ∫
t

0
eAτBBTeATτdτ

Wt ≈ ℂℂT

Wtξ = λξ
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·x = Ax + Bu x ∈ ℝn

ℂ = [B AB A2B … An−1B]
>>rank(ctrb(A,B)) 

>>[U, S, V] = svd(C, ‘econ’)

Wt ∈ ℝn×n ℝ3

𝜆1𝜉1

𝜆2𝜉2

𝜆3𝜉3



Controllability Gramians
Fast Robots 2025

·x = Ax + Bu x ∈ ℝn

ℂ = [B AB A2B … An−1B]
>>rank(ctrb(A,B)) 

>>[U, S, V] = svd(C, ‘econ’)

By DLR, CC-BY 3.0, CC BY 3.0 de,  
https://commons.wikimedia.org/w/index.php?curid=61072555

• Controllability for very high 
dimensional systems?


• Many directions in  are  
extremely stable - you only need 
to control directions that impact 
your control objective


• Stabilizability

ℝn



Controllability Gramians

• 


• Controllability Gramian


• 


• 


• 


• Stabilizability

• A system is stabilizable iff all unstable eigenvectors of A 

are in the controllable subspace

x(t) = eAtx(0) + ∫
t

0
eA(t−τ)Bu(τ)dτ

Wt = ∫
t

0
eAτBBTeATτdτ

Wt ≈ ℂℂT

Wtξ = λξ
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·x = Ax + Bu x ∈ ℝn

ℂ = [B AB A2B … An−1B]
>>rank(ctrb(A,B)) 

>>[U, S, V] = svd(C, ‘econ’)
Wt ∈ ℝn×n

ℝ3

𝜆1𝜉1

𝜆2𝜉2

𝜆3𝜉3

(convolution of  with )eAt u(τ)

… and lightly damped>
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• Linear system:  


• Solution: 


• Eigenvectors: 


•
Eigenvalues: 


• Linear Transform: 


• Solution: 


• Mapping from x to z to x: 
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D =
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⋱
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• Discrete time: , where 


• Stability in discrete time: , stable iff 


• Nonlinear systems: 


• Linearization: 


• Controllability: 


• Reachability


• Controllability Gramian

x(k + 1) = Ãx(k) Ã = eAΔt

λ̃n = Rneinθ R < 1

·x = f(x)

Df
Dx x̄

·x = (A − BK)x>>[T,D] = eig(A) >>rank(ctrb(A,B))



Linear Systems

• Linear systems review


• Eigenvectors and eigenvalues


• Stability


• Discrete time systems


• Linearizing nonlinear systems


• Controllability


• Observability
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These should look familiar from:


• MATH2940 Linear Algebra


• ECE3250 Signals and Systems


• ECE5210 Theory of Linear Systems


• MAE3260 System Dynamics


• and many others…Based on “Control Bootcamp”, Steve Brunton, UW
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x=[𝜃
𝜃̇]
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