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Class Action Items

 Lab 3 is due today/tomorrow, if you need to use a slip week, please send us a private
message on Ed. You can do this up until the deadline.

* Lab 4 starts today, at the end of this lab you will have a fully-integrated RC car, and we
will start thinking about programming simple control strategies!

 Good example from last year: https://nila-n.github.io/lLab4.html

* Note about battery connector.

 (GGrades for Lab 1 and Lab 2 were posted yesterday/ later today, let us know if you have
any questions.

* One thing | will note is that your website serves as a public repository of information,
you should write enough text so that we can understand what you worked on (there
were a couple examples of videos with no description).


https://nila-n.github.io/Lab4.html
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Linear Systems

e Linear systems review x = Ax+Bu

* Eigenvectors and eigenvalues
o Stability

. . These should look familiar from:;
* Discrete time systems

« MATH2940 Linear Algebra
ECE3250 Signals and Systems

* Linearizing nonlinear systems

* Controllability

ECES5210 Theory of Linear Systems
MAE3260 System Dynamics

* Observability

Based on “Control Bootcamp”, Steve Brunton, UW and many others...
https://www.youtube.com/watch?v=Pi7/I8mM|YVE



https://www.youtube.com/watch?v=Pi7l8mMjYVE
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Linear Systems Review

* Linear system: X = Ax . Discrete time: x(k + 1) = Ax(k), where A = ¢4
. . _ At 3 |
Solution: x(#) = ¢™x(0) . Stability in discrete time: A" = R"e"?, stable iff R < 1
« Eigenvectors: T = [51 Er ... fn] . Nonlinear systems: & = f(x)
A Df
J , Linearization: —
Eigenvalues: D = > Dx |5
* [>>[T,D] = eig(A) h
/ln
e Linear Transform: AT = TD
. Solution: ! = P11

» Mapping from x to z to x: x(t) = Te?'T~'x(0)

e Stability in continuous time: 4 = a + ib, stable iff a < O
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Linear Systems

* Linear systems review x = Ax+Bu

* Eigenvectors and eigenvalues
o Stability

* Discrete time systems

These should look familiar from:
« MATH2940 Linear Algebra
ECE3250 Signals and Systems

* Linearizing nonlinear systems

* Controllability

ECES5210 Theory of Linear Systems
MAE3260 System Dynamics

e Observability

Based on “Control Bootcamp”, Steve Brunton, UW and many others...
https://www.youtube.com/watch?v=Pi7/I8mM|YVE



https://www.youtube.com/watch?v=Pi7l8mMjYVE
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Basic steps to linearize nonlinear systems

X =f(x) — x=Ax

* Find some fixed points
« Tstf(x)=0

e Linearize about them

Df B of
* Dxl|. 5xj

X

. Vector field of

“ Jacobian” the dynamics

1/2

e |f you zoom in on X, your system 0 1 2 h3
will look linear! a0 =g+ L] w-n+ L | -y G- +..

. Dx
e (Good control will keep you near

the fixed point, where the model
Is valid!
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Basic steps to linearize nonlinear systems

X =f(x) — x=Ax

* Find some fixed points
+ T stf(x) =0

Gimbaled Thrust

Center Line { : Thrust Line

: : ool
gimbal angle —'ai— : —ia—

e Linearize about them

Df of, |
—| = | — 1 “Jacobian”
* Dx 5xj

X

Intuitively, you know:
o Stable point

* Eigenvalues
« Complex poles

nuuuuuanuu Unstable point
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Basic steps to linearize nonlinear systems “

* Find some fixed points
+ T stf(x) =0

e Linearize about them
D of:
—f = [i] “Jacobian”

* Dx 5)6]

X
I

AN
|

X =f(x) — x=Ax

Equations of motion

T = — mgL sin(6)

T =10

10 = — mgL sin(6)

Point mass inertia: [ = mL?
mL*0 = — mgL sin(0)

g g
0 = — —sin(@
3 (6)
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Basic steps to linearize nonlinear systems

X =f(x) — x=Ax

* Find some fixed points §=—Ssin@) -0 =1 Justsimplifies
L L constants
¢+ Tstf(x)=0
X = X1 — 9
 Linearize about them 2l 16

D of-
—f — i “Jacobian” i Wl
Dx |. 0X; dr ||

X

AN
|
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Basic steps to linearize nonlinear systems

X =f(x) — x=Ax

» Find some fixed points [xll H J=— % $in(@) — 50 % _
X = —
PEsn =0 d’m]_[ % ]
* Linearize about them dt |2 —s1n(x;) — 0x,

I
Df of | _ 0, Df 5, ox
—| = |— | “Jacobian” X =
* Dx 5)6]

Dx | &

O0X 1 5X2
\\\\\\\\\\\\\\\\\\\\\\I\\\\\\\\\\\\\\\\\\\“
I

X
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Basic steps to linearize nonlinear systems

X =f(x) — x=Ax

* Find some fixed points
« Tstf(x)=0

e Linearize about them
Df 5f

* Dx|. 5xj

X

. Vector field of

“ Jacobian” the dynamics

1/2
I 1 1

AN

==t 1

unstable
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Controllability

x =Ax+ Bu x € R"
A E L nxm
e |s the system controllable?
Y u e RY
* How do we design the control law, u? B € R4

A linear controller (K matrix) can be optimal for linear systems!
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Controllability

X =Ax+ Bu x e R"”
x=Ax—BKx A e R™m
x=A-BK)x ueR?

New dynamics B & R"*4

* |s the system controllable?

« How do we design the control law, u?

A linear controller (K matrix) can be optimal for linear systems!
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Controllability

X =Ax + Bu x e R"”
A lable if x=Ax—BKx A e R™m"
* A system is controllable if you can steer .
your state x anywhere you want in R" xX=A@-BK)x ueR?

New dynamics B & [R"*4

A linear controller (K matrix) can be optimal for linear systems!
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Controllability

X =Ax + Bu x € R”
A system is controllable if t t=Ax—BKx A e€R™"
* A system is controllable if you can steer .
your state x anywhere you want in R" xX=A@-BK)x ueR?

New dynamics B & R4

Often, you don’t get to choose A or B
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Controllability

X =Ax + Bu x e R"”
A lable if x=Ax—BKx A e R™m"
* A system is controllable if you can steer .
your state x anywhere you want in R" xX=A@-BK)x ueR?

New dynamics B & R"*4

 Matlab >> rank(ctrb(A,B))

A linear controller (K matrix) can be optimal for linear systems!
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Controllability

X =Ax+ Bu x e R"
| x=Ax—BKx A e R™™"
 (Can you control this system? .
’x1] _ [1 o] ’x1] H ) X=@-BK)x ueR?
X, 0 2] |*2 1 New dynamics B & [R'*4




Controllability

 (Can you control this system?

=1 o

x1=10 x1+1() U
* X% 0 2| [* 0 1| [
Xl |1 1] [ 0
' xj‘[oz ol 71"

* Controllability matrix
 Matlab >>ctrb(A,B)

. C=|B AB A2B ... A" B

* The system is controllable iff rank(C) = n

Fast Robots 2025

X =Ax+ Bu x e R"”
x=Ax—BKx A e R™m
x=A-BK)x ueR?

New dynamics B & R"*4

FYI! Just because a linearized, nonlinear
system is uncontrollable, it can still be
nonlinearly controllable!
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Controllability in Discrete Time

X =Ax+ Bu x e R”
C=|B AB A2B ... A" B
» Why does C predict controllability?

. Discrete time impulse response: x(k + 1) = Ax(k) + Bu(k)

1(0) = 1 x(0) =0 (assume a single input actuator)
u(l) =0 x(1) = Ax(0) + Bu(0) = B
u(2) =0 x(2) = Ax(1) + Bu(1) = AB

u3) =0 x(3) = A’B
. . If the system is controllable, then the
‘ Impulse response affects every state

u(m) =0 x(m) = A" 'B in R”
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Review

* Linear system: X = Ax . Discrete time: x(k + 1) = Ax(k), where A = ¢4!

. L _ At ~ :
Solution: x(7) = ™ x(0) . Stability in discrete time: A = R"e"?, stable iff R < 1

» Eigenvectors: I' = [51 SIS 5”] » Nonlinear systems: x = f(x)
Ay Df
1 , Linearization: —
Eigenvalues: D = > Dx |5
* [>>[T,D] = eig(A) Ji » Controllability: x = (A — BK)x |>>rank(ctrb(A,B))

e Linear Transform: AT = TD

. Solution: e = ¢TPT 't

» Mapping from x to z to x: x(t) = Te?'T~'x(0)

e Stability in continuous time: 4 = a + ib, stable iff a < O
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Reachabillity
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Controllability and Reachability

X =Ax+ Bu x e R"”
C=|B AB A’B ... A" !B

_Reachability

» A : states that are reachable at time ¢
Equivalences

« The system is controllable
e iff rank(C) = n

* You can choose K to arbitrarily place the eigenvalues of your closed loop system
e x=(A+ BK)x

 You can reach anywhere in R" in a finite amount of time and energy

. B =R"

« R, =& € R" for which there is an input
u(t) that makes x(r) = ¢




Controllability and Reachability

x=Ax+ Bu x e R"”

C=|B AB A’B

If the point is reachable,
any point in that direction
An-1 B] Is reachable

_Reachability
» A : states that are reachable at time ¢

Equivalences

. The system is controllable

e iff rank(C) = n

« R, =& € R" for which there is an input
u(t) that makes x(r) = ¢

* You can choose K to arbitrarily place the eigenvalues of your closed loop system

e x=(A+ BK)x

>>K = scipy.signal.place_poles(A, B, poles)

 You can reach anywhere in R" in a finite amount of time and energy

. B =R"
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Controllability Gramians

 We can test if the system is controllable
e ... but not how easy It Iis to control
e ... Or which directions are the easiest

e ... 0or how we could best improve our control authority
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Controllability Gramians

x =Ax+ Bu x € R”

N . C=|B AB A’B ... A"'B
Cx(@)=e"x(0)+ | e =D Bu(t)dr
0 >>rank (ctrb (A, B) )
e Controllability Gramian >>[U, S, VI = svd(C, fecon’)
AT e The SVD of A takes the form: A = UXV’
. Wt = | e"'BB e” 'dr Wt € R U = left singular vector
0 V =right singular vector
* Discrete time Y. = diagonal matrix of singular values
. W, ~ CC’

The eigenvectors with the biggest eigenvalues of the
. E=)f controllability gramian are also the most controllable directions in
6 =

state space!
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Controllability Gramians

x =Ax+ Bu x € R”

! C=1|B AB A°B ... A" !B
~x(t) = eMx(0) + [ e "D Bu(1)dr [ ]

0 >>rank (ctrb (A, B))

* Controllability Gramian >>[U, s, V] = svd(C, ‘econ’)

[
W, = J e"BBTe? dr W, e R™"
0

e Discrete time
. W, ~ CC’
e Wi =AE




Controllability Gramians

—— S ————— “m_ﬁ
By DLR, CC-BY 3.0, CC BY 3.0 de,
https://commons.wikimedia.org/w/index.php?curid=61072555
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X =Ax+ Bu x e R”
C=|B AB A’B ... A" !B

>>rank (ctrb (A, B) )

>>[U, S, V] = svd(C, ‘econ’)

* Controllability for very high
dimensional systems?

« Many directions in R" are
extremely stable - you only need
to control directions that impact
your control objective

. Stabilizability
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Controllability Gramians

" o 0 "t . O x =Ax+ Bu x € R”
x(1) = e x(0)+ | e’V YBu(r)dr
‘ C=|B AB A2B ... A" B

0" (convolution of ¢ with (7))
» Controllability Gramian >>rank (ctrb (A, B))
J . e >>[U, S, V] = svd(C, ‘econ’)
W, = J e "BBTer dr W, €|
- W, ~ CC’
. tf = AE
e Stabilizability ... and lightly damped

\"/
* A system is stabilizable iff all unstable eigenvectors of A
are in the controllable subspace
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Review

* Linear system: X = Ax - Discrete time: x(k + 1) = Ax(k), where A = %!
. _ At ~ .

» Solution: x(¢) = e x(0) » Stability in discrete time: A" = R"e™ stableiff R < 1
» Eigenvectors: ' = [él SINEE 5'”!] » Nonlinear systems: X = f(x)

A Df

1 , Linearization: —
Eigenvalues: D = 2 Dx |5
* [>>[I,D] = eig(A) 1 » Controllability: x = (A — BK)x |>>rank(ctrb(A,B))
n

e Linear Transform: AT = TD * Reachability
. Solution: eA! = eTDT— * (Controllability Gramian

» Mapping from x to z to x: x(t) = Te?'T~'x(0)

e Stability in continuous time: 4 = a + ib, stable iff a < O
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Linear Systems

* Linear systems review x = Ax+Bu

* Eigenvectors and eigenvalues
o Stability

* Discrete time systems

These should look familiar from:
« MATH2940 Linear Algebra
ECE3250 Signals and Systems

* Linearizing nonlinear systems

* Controllability

ECES5210 Theory of Linear Systems
MAE3260 System Dynamics

e Observability

Based on “Control Bootcamp”, Steve Brunton, UW and many others...
https://www.youtube.com/watch?v=Pi7/I8mM|YVE



https://www.youtube.com/watch?v=Pi7l8mMjYVE

