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Class Action Items

* | am out of town at the beginning of next week.
* Prof. Petersen is going to fill in to teach class on Tuesday.
* | will miss lab sections, but will hold additional open hours when | return!

e [Lab 4 check-In

 |ab 5 things to consider
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Linear PID

» (GGreat example from last year: https://fast.synthghost.com/lab-5-linear-pid-
control/ from Stephan Wagner. You can breeze past his program organization
and just get to the lab tasks. Mikayla also had a good report from last year.

My advice, go really slowly to start

Pl control
Dead band =35
Setpoint = 300

------



https://fast.synthghost.com/lab-5-linear-pid-control/
https://fast.synthghost.com/lab-5-linear-pid-control/
https://fast.synthghost.com/lab-5-linear-pid-control/
https://fast.synthghost.com/lab-5-linear-pid-control/
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Linear Systems
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Linear Systems — where are we?

* Linear systems review x = Ax+Bu

* Eigenvectors and eigenvalues
o Stability

. . These should look familiar from:;
* Discrete time systems

« MATH2940 Linear Algebra
ECE3250 Signals and Systems

* Linearizing nonlinear systems
* Controllability
* LQR control

* Observability
Based on “Control Bootcamp”, Steve Brunton, UW and many others...
https://www.youtube.com/watch?v=Pi7/I8mM|YVE

ECES5210 Theory of Linear Systems
MAE3260 System Dynamics



https://www.youtube.com/watch?v=Pi7l8mMjYVE
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Controllability

X =Ax+ Bu x e R"”
x=Ax—BKx A & R™"
x=A-BK)x ueR?

New dynamics B & R"*4

* |s the system controllable?

* A system is controllable if you can steer
your state x anywhere you want in R"

e Matlab >>rank (ctrb (A, B))

« How do we design the control law, ©?

A linear controller (K matrix) can be optimal for linear systems!
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Controllability

 (Can you control this system?

=1 o

[O] u Uncontrollable

1
Xl |1 0] [* 1 O] [%
. LJ = [O 2] X + 0 1] [Ltz] Controllable
X1 _ 1 11 [ n 0 4 ab!
- %, 0 2| % ) ontrollable

 Systems with tightly coupled dynamics can
be controllable..

 Get away with using a simple B and fewer
Sensors
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Controllability

For the first system:

c_ [0 1-0+0-1] _ 10 0
1 0-04+2-1 1 2
 (Can you control this system?

=1 o

n=2, rank =1

[O] u Uncontrollable

1 For the second system:

X X u
o .1 — L 9 + 0 'l controllable 101 1 0
X, 0 2| [* 0 1] [“ C—1002
X1 _ |1 1] M n 0 4o ’
. ).Cz o 2| |x i ontrollable n=2,rank =2
* Controllability matrix For the third system:
e Matlab >>ctrb (A, B) ‘. 0 1-0+41-1 _ 0 1
. C=|B AB A’B ... A" B 1 0-04+2-1] |1 2

» The system is controllable iff rank(C) = n n=2,rank = 2
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Controllability

X =Ax+ Bu x e R"
| x=Ax—BKx A e R™"
 (Can you control this system?
: ¢ — — q
’xll _ [1 ()] ’xll [O] ) X (A BK)X u e R
I %) 0 2| |*%2 1 New dynamics B & R4
Xl |1 0] [* n 1 O] %
* 5] [0 2] % 0 1| [
Xl |1 1] [ 0
' xj‘[o 2] ol 71"

* Controllability matrix
FYI! Just because a linearized, nonlinear
system is uncontrollable, this does not

. _ 9 _1 mean that the nonlinear system is
&= [B AB A°B ... A" B] uncontrollable!

e Matlab >>ctrb (A, B)

» The system is controllable iff rank(C) = n
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Controllability in Discrete Time

X =Ax+ Bu x e R”
C=|B AB A2B ... A" B
» Why does C predict controllability?

. Discrete time impulse response: x(k + 1) = Ax(k) + Bu(k)

1(0) = 1 x(0) =0 (assume a single input actuator)
u(l) =0 x(1) = Ax(0) + Bu(0) = B
u(2) =0 x(2) = Ax(1) + Bu(1) = AB

u3) =0 x(3) = A’B
. . If the system is controllable, then the
‘ Impulse response affects every state

u(m) =0 x(m) = A" 'B in R”



Review

Linear system: X = Ax

» Solution: x(7) = e'x(0)

Eigenvectors: I = [51 52 5n]

A
4

Eigenvalues: D =

>>[T,D] = eig(A) /ln

» Mapping from x to z to x: x(t) = Te?'T~'x(0)

Linear Transform: AT = TD

| 1
Solution: 2! = !PT 1
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Discrete time: x(k + 1) = Ax(k), where A = ¢!

Stability in discrete time: " = R"e™, stable iff R < 1

Nonlinear systems: x = f(x)

Dy

Linearization: —
Dx

X

Controllability: x = (A — BK)x

e Stability in continuous time: 4 = a + ib, stable iff a < O

>>rank (ctrb (A, B))
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Reachabillity
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Controllability and Reachability

X =Ax+ Bu x e R"”
C=|B AB A’B ... A" !B

_Reachability

» A : states that are reachable at time ¢
Equivalences

« The system is controllable
e iff rank(C) = n

* You can choose K to arbitrarily place the eigenvalues of your closed loop system
e x=(A - BK)x

 You can reach anywhere in R" in a finite amount of time and energy

. B =R"

e R, = {& &€ R" for which there is an input [~
u(t) that makes x(r) = ¢




Controllability and Reachability

x=Ax+ Bu x e R"”

C=|B AB A’B

If the point is reachable,
any point in that direction
An-1 B] Is reachable

_Reachability
» A : states that are reachable at time ¢

Equivalences

. The system is controllable

e iff rank(C) = n

« X, = {& € R" for which there is an input
u(t) that makes x(r) = ¢

* You can choose K to arbitrarily place the eigenvalues of your closed loop system

e x=(A - BK)x

>>K = scipy.signal.place poles(A, B, poles)

 You can reach anywhere in R" in a finite amount of time and energy

. B =R"
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Controllability Gramians
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Controllability Gramians

 We can test if the system is controllable
e ... but not how easy It Iis to control
e ... Or which directions are the easiest

e ... 0or how we could best improve our control authority
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Controllability Gramians

x =Ax+ Bu x € R”

N o C=|B AB A2B ... A™ !B
Cx(@)=e"x(0)+ | e =D Bu(t)dr
0 >>rank (ctrb (A, B) )
e Controllability Gramian >>1U, 5, V] = svd(L, ‘econ’)
e AT - The SVD of A takes the form: A = UX V!
. Wt = | e"'BB e” 'dr Wt € R U = left singular vector
0 V = right singular vector
e Wi =AE >, = diagonal matrix of singular values

 Discrete time _ _ _ _
The eigenvectors with the biggest eigenvalues of the

e W ~ CCT controllability gramian are also the most controllable directions In
r ™ state space!
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Controllability Gramians

x =Ax+ Bu x € R”

! C=1|B AB A°B ... A" !B
~x(t) = eMx(0) + [ e "D Bu(1)dr [ ]

0 >>rank (ctrb (A, B))

* Controllability Gramian >>[U, s, V] = svd(C, ‘econ’)

[
W, = J e"BBTe? dr W, e R™"
0

* t§=/1§

e Discrete time

- W, ~ CC’




Controllability Gramians

—— ——— “m_ﬁ
By DLR, CC-BY 3.0, CC BY 3.0 de,
https://commons.wikimedia.org/w/index.php?curid=61072555
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X =Ax+ Bu x e R”
C=|B AB A’B ... A" !B

>>rank (ctrb (A, B) )

>>[U, S, V] = svd(C, ‘econ’)

* Controllability for very high
dimensional systems?

« Many directions in R" are
extremely stable - you only need
to control directions that impact
your control objective

. Stabilizability
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Controllability Gramians

" o 0 "t . O x =Ax+ Bu x € R”
x(1) = e x(0)+ | e’V YBu(r)dr
‘ C=|B AB A2B ... A" B

0" (convolution of ¢ with (7))
» Controllability Gramian >>rank (ctrb (A, B))
J . e >>[U, S, V] = svd(C, ‘econ’)
W, = J e "BBTet Tdr W, €|
- W, ~ CC’
. tf = AE
e Stabilizability ... and lightly damped

\"/
* A system is stabilizable iff all unstable eigenvectors of A
are in the controllable subspace



Review

Linear system: X = Ax

» Solution: x(7) = e'x(0)

Eigenvectors: I = [51 52 5n]

A
4

Eigenvalues: D =

>>[T,D] = eig(A) /ln

» Mapping from x to z to x: x(t) = Te?'T~'x(0)

Linear Transform: AT = TD

| 1
Solution: 2! = !PT 1
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Discrete time: x(k + 1) = Ax(k), where A = 42!

Stability in discrete time: 1" = R"e", stable iff R < 1

Nonlinear systems: x = f(x)

Df

Linearization: —
Dx

X
Controllability: X = (A — BK)x
Reachability

Controllability Gramian

e Stability in continuous time: 4 = a + ib, stable iff a < O

>>rank (ctrb (A, B))
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Linear Systems — where are we?

* Linear systems review x = Ax+Bu

* Eigenvectors and eigenvalues
o Stability

. . These should look familiar from:;
* Discrete time systems

« MATH2940 Linear Algebra
ECE3250 Signals and Systems

* Linearizing nonlinear systems
* Controllability
* LQR control

* Observability
Based on “Control Bootcamp”, Steve Brunton, UW and many others...
https://www.youtube.com/watch?v=Pi7/I8mM|YVE

ECES5210 Theory of Linear Systems
MAE3260 System Dynamics



https://www.youtube.com/watch?v=Pi7l8mMjYVE
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Cart Pole

Based entirely on Steve Brunton’s Controlled Bootcamp Lecture Series



Inverted pendulum on a cart 7

How do we reason about

this system?

1. Egs. of motion

l

2. State space model

X

X
Y=10
()

3. Fixed points

&

7'\

)\

d

4. Jacobian |—

Df
Dy ;

y = Ay + Bu

Fast Robots 2025 -

1/ Force acting on the
cart in the x direction

5. Is it controllable?

!

6. Add linear control

y = (A — BK)y
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Inverted pendulum on a cart

Equations of motion
Euler Lagrange Formulation

d (oL oL _, .
g dt 5ql 5ql_ i - B

T—0 |
% V=i == mitos)
| x, = x + [sin(0)
U T= M2+ ~mi +~mj? . '
m — S TS T X,, = X + 10 cos(0)
‘ = — [cos(6)
d | 9 | .9 . Ym =
T = —M — :

1

] . . .
T = EM;'@ + Em(xz + 210x cos(0) + 1767 cos?(0) + 170? sin*(0))




Fast Robots 2025

Inverted pendulum on a cart

Equations of motion In x
Euler Lagrange Formulation

| d [ oL oL 0
=05 g dt \ o0g; 5q;
/L 1 P
v | L = E(M + m)x- + Eml & + mlOx cos(0) + mgl cos(O)
] X
- M U - = F — d3
Q/ 56111 x, Q. =F—dx N
d — =M+ m)x + mlO cos(0) — =0
OX OX

d [ oL N . 2
— | — ) = M+ m)x + mlO cos(6) — mlO- sin(0)
dt \ ox

(M + m)X + mlO cos(6) — mlB? sin(0) = F — dx
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Inverted pendulum on a cart

Equations of motion in &
9 Euler Lagrange Formulation

| d [ oL 5L_Q
VI di \ 56 ) Sa;

|
i
|

| | . .
L= E(M + m)x* + Emlzé’2 + mlOx cos(0) + mgl cos(6)

—
E M U
- g =0 Q. =0
5L ] 5L |
d — = mi?0 + mlicos(0) = = — mldxsin(d) — mel sin(6)
50 50
d (6L . L
— | — ) = ml“0 + mlx cos(6) — mix6 sin(60)
dt \ 656

ml?0 + mlx cos(6) + mgl sin(0) = 0
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Inverted pendulum on a cart

Equations of motion
(M + m)x + mlO cos(0) — ml&” sin(0) = F — dx

ml*0 + mlx cos(0) + mgl sin(d) = 0

F + ml6? sin(0) — dx
—mgl sin(6)

(M+m) mlcos(O)] |x B
mlcos(@)  mil> ] [é] B

(ml*)(F + ml0? sin(@) — dx + mg cos(6)sin(0))

Xl A
[é] B (—ml cos(0))(F + ml0? sin(0) — dx) — (M + m)mgl sin(6)
A

det = A = mI2(M + m(1 — cos2(6)))
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Inverted pendulum on a cart S

Linearize the nonlinear system

(ml*)(F + mlé? sin(0) — dx + mg cos(@)sin(0))
A
(—ml cos(O)(F + mlé? sin(0) — dx) — (M + m)mgl sin()
A

.

A = ml>(M + m(1 — cos*(0)))
Linearize about: .
X x=1ree, x=0,0=1{0, n},0=0
(ml*)(F + ml0? sin(@) — dx + mg cos(6)sin(0))
A

1 0

mg

0
— 0
1
0

0

H‘ o M M
. dt 0 0
(—ml cos(0))(F + mlo? sin(@) — dx) — (M + m)mgl sin(6) upd up(m+M)g
A ML ML L

_|_

o O O O
I
B

1
M
0
up

T D ==
|
T D = =

whereup=1atfd =randup=-1atfd =0



Inverted pendulum on a cart
Eigenvalues, Stability, Controllability

. 0 1 0 0 . 0
d mg 1
L £ I A N £ N Bl
a1l 10 0 0 1] |6 0
9 upd up(m+M)g g up.
0 ML ML 0 ML

Let’s go to Matlab!
 Check nonlinear equations
 Run open-loop simulation

* Check for stability, controllability

-




Inverted pendulum on a cart

Control Law

y = Ay + Bu
u=— Ky
y=(A - BK)y

Let’s go to Matlab!
 Pole placement.

 Define poles >>eigs = [-1 -1.2 -1.3 -1.47;

e K-matrix >>K = place (A,B,eigs)
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Pole Placement

 Python

e K = scipy.signal.place poles(A,B,poles)!
» Barely stable eigenvalues: not enough control authority

 More negative eigenvalues: faster response, less robust system

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.place_poles.html
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Linear Quadratic Regulator

 What are the optimal eigenvalues for our system?

* [Jradeoff performance and control effort

o0
. Define cost function: [ (x'Ox + u' Ru)dt
0
1
0 = 1 10 cost of my state being away from setpoint
100

R = 0.001 cost of input energy
* Solved using the Ricatti Equation (compute expensive O(n3)

« Matlab >>1qgr (A, B, Q, R)



Inverted pendulum on a cart

The controller works!

Caveats:
* |n simulation
* Pratical issues:
* |mperfect models
 Nonlinear parts: deadband, saturation, etc.

 Partial state feedback




Review

e Linear system: x = Ax

» Solution: x(¢) = e**x(0)

« Eigenvectors: 1" = [51 SIS fn]
A
. A
Eigenvalues: D =
|‘>>[T,D] = e1g (A) /ln

e Linear Transform: AT = TD

_ —1
e Solution: ! = !PTt

» Mapping from x to z to x: x(¢) = Te?'T~'x(0)
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Discrete time: x(k + 1) = Ax(k), where A = ¢42!

Stability in discrete time: " = R"e", stable iff R < 1

Nonlinear systems: x =

Df

Linearization: —
Dx

X

J(x)

Controllability: x = (A — BK)x |>>rank (ctrb (A, B))

Reachability

Controllability Gramian

Pole Placement |[>>place(A,B,poles)

Optimal Control (LQR)

e Stability in continuous time: 4 = a + ib, stable iffa < O

>>LOR (A, B, Q,R)




