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Class Action Items

• I am out of town at the beginning of next week. 


• Prof. Petersen is going to fill in to teach class on Tuesday. 


• I will miss lab sections, but will hold additional open hours when I return!


• Lab 4 check-in


• Lab 5 things to consider
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Lab 5
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Linear PID

• Great example from last year: https://fast.synthghost.com/lab-5-linear-pid-
control/ from Stephan Wagner. You can breeze past his program organization 
and just get to the lab tasks. Mikayla also had a good report from last year.


• My advice, go really slowly to start 

PID actuator
setpoint x+

-

Lab 6: PID control

3

• Task A: Position control
• Benefit: Easiest

PIDset point output+

-
actuator

x

Sensor 
fusion

�𝑥𝑥 y

PI control
Dead band = 35
Setpoint = 300

slooow

(Lab 7)

*Lab 8

https://fast.synthghost.com/lab-5-linear-pid-control/
https://fast.synthghost.com/lab-5-linear-pid-control/
https://fast.synthghost.com/lab-5-linear-pid-control/
https://fast.synthghost.com/lab-5-linear-pid-control/


Linear Systems
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• Linear systems review


• Eigenvectors and eigenvalues


• Stability


• Discrete time systems


• Linearizing nonlinear systems


• Controllability


• LQR control


• Observability

Linear Systems — where are we?
Fast Robots 2025

·x = Ax+Bu

These should look familiar from:


• MATH2940 Linear Algebra


• ECE3250 Signals and Systems


• ECE5210 Theory of Linear Systems


• MAE3260 System Dynamics


• and many others…Based on “Control Bootcamp”, Steve Brunton, UW

https://www.youtube.com/watch?v=Pi7l8mMjYVE 

https://www.youtube.com/watch?v=Pi7l8mMjYVE


Controllability
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Controllability

• Is the system controllable?


• A system is controllable if you can steer 
your state  anywhere you want in 


• Matlab >>rank(ctrb(A,B))


• How do we design the control law, ?

x ℝn

u

−Kx

·x = Ax + Bu
System y = xu
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·x = Ax − BKx

·x = Ax + Bu x ∈ ℝn

A ∈ ℝn×n

u ∈ ℝq

B ∈ ℝn×q

·x = (A − BK)x
New dynamics

A linear controller (K matrix) can be optimal for linear systems!

“full state feedback”



Controllability

• Can you control this system?


• 


• 


• 


• Systems with tightly coupled dynamics can 
be controllable..


• Get away with using a simple B and fewer 
sensors

[
·x1
·x2] = [1 0

0 2] [x1
x2] + [0

1] u

[
·x1
·x2] = [1 0

0 2] [x1
x2] + [1 0

0 1] [u1
u2]

[
·x1
·x2] = [1 1

0 2] [x1
x2] + [0

1] u
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Uncontrollable

Controllable

Controllable



Controllability

• Can you control this system?


• 


• 


• 


• Controllability matrix


• Matlab >>ctrb(A,B) 

• 


• The system is controllable iff 

[
·x1
·x2] = [1 0

0 2] [x1
x2] + [0

1] u

[
·x1
·x2] = [1 0

0 2] [x1
x2] + [1 0

0 1] [u1
u2]

[
·x1
·x2] = [1 1

0 2] [x1
x2] + [0

1] u

ℂ = [B AB A2B … An−1B]
rank(ℂ) = n
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Uncontrollable

Controllable

Controllable

For the first system: 




n = 2, rank = 1

ℂ = [0 1 ⋅ 0 + 0 ⋅ 1
1 0 ⋅ 0 + 2 ⋅ 1] = [0 0

1 2]
For the second system: 




n = 2, rank = 2

ℂ = [0 1 1 0
1 0 0 2]

For the third system: 




n = 2, rank = 2

ℂ = [0 1 ⋅ 0 + 1 ⋅ 1
1 0 ⋅ 0 + 2 ⋅ 1] = [0 1

1 2]



Controllability

• Can you control this system?


• 


• 


• 


• Controllability matrix


• Matlab >>ctrb(A,B)


• 


• The system is controllable iff 

[
·x1
·x2] = [1 0

0 2] [x1
x2] + [0

1] u

[
·x1
·x2] = [1 0

0 2] [x1
x2] + [1 0

0 1] [u1
u2]

[
·x1
·x2] = [1 1

0 2] [x1
x2] + [0

1] u

ℂ = [B AB A2B … An−1B]
rank(ℂ) = n

·x = Ax + Bu
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·x = Ax − BKx
·x = (A − BK)x

x ∈ ℝn

A ∈ ℝn×n

u ∈ ℝq

B ∈ ℝn×qNew dynamics

FYI! Just because a linearized, nonlinear  
system is uncontrollable, this does not  
mean that the nonlinear system is  
uncontrollable!



Controllability in Discrete Time

• Why does  predict controllability?


• Discrete time impulse response: 

ℂ
x(k + 1) = Ãx(k) + B̃u(k)

·x = Ax + Bu
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x ∈ ℝn

If the system is controllable, then the  
impulse response affects every state  
in ℝn

ℂ = [B AB A2B … An−1B]

u(0) = 1
u(1) = 0

u(3) = 0

u(m) = 0
⋮

u(2) = 0

x(0) = 0
x(1) = Ãx(0) + B̃u(0) = B̃
x(2) = Ãx(1) + B̃u(1) = ÃB̃
x(3) = Ã2B̃

⋮
x(m) = Ãm−1B̃

(assume a single input actuator)



Review
• Linear system:  


• Solution: 


• Eigenvectors: 


•
Eigenvalues: 


• Linear Transform: 


• Solution: 


• Mapping from x to z to x: 


• Stability in continuous time: , stable iff 

·x = Ax

x(t) = eAtx(0)

T = [ξ1 ξ2 . . . ξn]

D =

λ1

λ2
⋱

λn

AT = TD

eAt = eTDT−1t

x(t) = TeDtT−1x(0)

λ = a + ib a < 0
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• Discrete time: , where 


• Stability in discrete time: , stable iff 


• Nonlinear systems: 


• Linearization: 


• Controllability: 

x(k + 1) = Ãx(k) Ã = eAΔt

λ̃n = Rneinθ R < 1

·x = f(x)

Df
Dx x̄

·x = (A − BK)x>>[T,D] = eig(A) >>rank(ctrb(A,B))



Reachability
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Controllability and Reachability

• The system is controllable


• iff 

• You can choose K to arbitrarily place the eigenvalues of your closed loop system


• 


• You can reach anywhere in  in a finite amount of time and energy


•

rank(ℂ) = n

·x = (A − BK)x
ℝn

ℛt = ℝn

·x = Ax + Bu
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x ∈ ℝn

ℂ = [B AB A2B … An−1B]

• : states that are reachable at time 


•  for which there is an input 
 that makes 

ℛt t
ℛt = {ξ ∈ ℝn

u(t) x(t) = ξ

Reachability

Equivalences



Controllability and Reachability

• The system is controllable


• iff 

• You can choose K to arbitrarily place the eigenvalues of your closed loop system


• 


• You can reach anywhere in  in a finite amount of time and energy


•

rank(ℂ) = n

·x = (A − BK)x
ℝn

ℛt = ℝn

·x = Ax + Bu
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x ∈ ℝn

ℂ = [B AB A2B … An−1B]

• : states that are reachable at time 


•  for which there is an input 
 that makes 

ℛt t
ℛt = {ξ ∈ ℝn

u(t) x(t) = ξ

Reachability

Equivalences

ℝ3

𝜉
If the point is reachable, 
any point in that direction 
is reachable

>>K = scipy.signal.place_poles(A, B, poles)



Controllability Gramians
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Controllability Gramians

• We can test if the system is controllable


• … but not how easy it is to control


• … or which directions are the easiest


• … or how we could best improve our control authority
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Controllability Gramians

• 


• Controllability Gramian


• 


• 


• Discrete time


•

x(t) = eAtx(0) + ∫
t

0
eA(t−τ)Bu(τ)dτ

Wt = ∫
t

0
eAτBBTeATτdτ

Wtξ = λξ

Wt ≈ ℂℂT
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·x = Ax + Bu x ∈ ℝn

ℂ = [B AB A2B … An−1B]
>>rank(ctrb(A,B)) 

>>[U, S, V] = svd(C, ‘econ’)

Wt ∈ ℝn×n The SVD of A takes the form:  
 = left singular vector 
 = right singular vector 
 = diagonal matrix of singular values

A = UΣVT

U
V
Σ

The eigenvectors with the biggest eigenvalues of the 
controllability gramian are also the most controllable directions in 
state space!



Controllability Gramians
Fast Robots 2025

·x = Ax + Bu x ∈ ℝn

ℂ = [B AB A2B … An−1B]
>>rank(ctrb(A,B)) 

>>[U, S, V] = svd(C, ‘econ’)

Wt ∈ ℝn×n ℝ3

𝜆1𝜉1

𝜆2𝜉2

𝜆3𝜉3

• 


• Controllability Gramian


• 


• 


• Discrete time


•

x(t) = eAtx(0) + ∫
t

0
eA(t−τ)Bu(τ)dτ

Wt = ∫
t

0
eAτBBTeATτdτ

Wtξ = λξ

Wt ≈ ℂℂT



Controllability Gramians
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·x = Ax + Bu x ∈ ℝn

ℂ = [B AB A2B … An−1B]
>>rank(ctrb(A,B)) 

>>[U, S, V] = svd(C, ‘econ’)

By DLR, CC-BY 3.0, CC BY 3.0 de,  
https://commons.wikimedia.org/w/index.php?curid=61072555

• Controllability for very high 
dimensional systems?


• Many directions in  are  
extremely stable - you only need 
to control directions that impact 
your control objective


• Stabilizability

ℝn



Controllability Gramians

• 


• Controllability Gramian


• 


• 


• 


• Stabilizability

• A system is stabilizable iff all unstable eigenvectors of A 

are in the controllable subspace

x(t) = eAtx(0) + ∫
t

0
eA(t−τ)Bu(τ)dτ

Wt = ∫
t

0
eAτBBTeATτdτ

Wt ≈ ℂℂT

Wtξ = λξ
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·x = Ax + Bu x ∈ ℝn

ℂ = [B AB A2B … An−1B]
>>rank(ctrb(A,B)) 

>>[U, S, V] = svd(C, ‘econ’)
Wt ∈ ℝn×n

ℝ3

𝜆1𝜉1

𝜆2𝜉2

𝜆3𝜉3

(convolution of  with )eAt u(τ)

… and lightly damped>



Review
• Linear system:  


• Solution: 


• Eigenvectors: 


•
Eigenvalues: 


• Linear Transform: 


• Solution: 


• Mapping from x to z to x: 


• Stability in continuous time: , stable iff 

·x = Ax

x(t) = eAtx(0)

T = [ξ1 ξ2 . . . ξn]

D =

λ1

λ2
⋱

λn

AT = TD

eAt = eTDT−1t

x(t) = TeDtT−1x(0)

λ = a + ib a < 0
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• Discrete time: , where 


• Stability in discrete time: , stable iff 


• Nonlinear systems: 


• Linearization: 


• Controllability: 


• Reachability


• Controllability Gramian

x(k + 1) = Ãx(k) Ã = eAΔt

λ̃n = Rneinθ R < 1

·x = f(x)

Df
Dx x̄

·x = (A − BK)x>>[T,D] = eig(A) >>rank(ctrb(A,B))



Linear Systems — where are we?
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·x = Ax+Bu

These should look familiar from:


• MATH2940 Linear Algebra


• ECE3250 Signals and Systems


• ECE5210 Theory of Linear Systems


• MAE3260 System Dynamics


• and many others…Based on “Control Bootcamp”, Steve Brunton, UW

https://www.youtube.com/watch?v=Pi7l8mMjYVE 

• Linear systems review


• Eigenvectors and eigenvalues


• Stability


• Discrete time systems


• Linearizing nonlinear systems


• Controllability


• LQR control


• Observability

https://www.youtube.com/watch?v=Pi7l8mMjYVE


Cart Pole
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Based entirely on Steve Brunton’s Controlled Bootcamp Lecture Series



Inverted pendulum on a cart
How do we reason about 
this system?
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𝜃

𝑥

𝑔

𝑀

𝑚

𝐿

Force acting on the 
cart in the x direction

𝑢

𝑑
1. Eqs. of motion

2. State space model

y =

x
·x
θ
·θ

ȳ =

free
0
0

0, π

3. Fixed points

·y = Ay + Bu

4. Jacobian

Df
Dy ȳ

5. Is it controllable?

6. Add linear control

·y = (A − BK)y



Inverted pendulum on a cart
Equations of motion
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𝑥

𝑔

𝑀

𝑚

𝐿

𝑢

𝑑

π − θ

Euler Lagrange Formulation

T =
1
2

M ·x2 +
1
2

m ·x2
m +

1
2

m ·y2
m

xm = x + l sin(θ)
·xm = ·x + l ·θ cos(θ)
ym = − l cos(θ)
·ym = l ·θ sin(θ)T =

1
2

M ·x2 +
1
2

m( ·x2
m + ·y2

m)

T =
1
2

M ·x2 +
1
2

m( ·x2 + 2l ·θ ·x cos(θ) + l2 ·θ2 cos2(θ) + l2 ·θ2 sin2(θ))

T =
1
2

(M + m) ·x2 +
1
2

ml2 ·θ2 + ml ·θ ·x cos(θ)

V = mgym = − mgl cos(θ)

d
dt ( δL

δ ·qi ) −
δL
δqi

= Qi L = T − V



Inverted pendulum on a cart
Equations of motion in x
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𝑥

𝑔

𝑀

𝑚

𝐿

𝑢

𝑑

π − θ
d
dt ( δL

δ ·qi ) −
δL
δqi

= Qi

L =
1
2

(M + m) ·x2 +
1
2

ml2 ·θ2 + ml ·θ ·x cos(θ) + mgl cos(θ)

qi = x, Qi = F − d ·x
δL
δ ·x

= (M + m) ·x + ml ·θ cos(θ)
δL
δx

= 0

d
dt ( δL

δ ·x ) = (M + m)··x + ml··θ cos(θ) − ml ·θ2 sin(θ)

(M + m)··x + ml··θ cos(θ) − ml ·θ2 sin(θ) = F − d ·x

Euler Lagrange Formulation



Inverted pendulum on a cart
Equations of motion in θ
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𝑥

𝑔

𝑀

𝑚

𝐿

𝑢

𝑑

π − θ
d
dt ( δL

δ ·qi ) −
δL
δqi

= Qi

L =
1
2

(M + m) ·x2 +
1
2

ml2 ·θ2 + ml ·θ ·x cos(θ) + mgl cos(θ)

qi = θ, Qi = 0
δL
δ ·θ

= ml2 ·θ + ml ·x cos(θ) δL
δθ

= − ml ·θ ·x sin(θ) − mgl sin(θ)

d
dt ( δL

δ ·θ ) = ml2··θ + ml··x cos(θ) − ml ·x ·θ sin(θ)

ml2··θ + ml··x cos(θ) + mgl sin(θ) = 0

Euler Lagrange Formulation



Inverted pendulum on a cart
Equations of motion
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𝑥

𝑔

𝑀

𝑚

𝐿

𝑢

𝑑

π − θ

[ (M + m) ml cos(θ)
ml cos(θ) ml2 ] [

··x
··θ] = [F + ml ·θ2 sin(θ) − d ·x

−mgl sin(θ) ]

det = Δ = ml2(M + m(1 − cos2(θ)))

[
··x
··θ] =

(ml2)(F + ml ·θ2 sin(θ) − d ·x + mg cos(θ)sin(θ))
Δ

(−ml cos(θ))(F + ml ·θ2 sin(θ) − d ·x) − (M + m)mgl sin(θ)
Δ

ml2··θ + ml··x cos(θ) + mgl sin(θ) = 0

(M + m)··x + ml··θ cos(θ) − ml ·θ2 sin(θ) = F − d ·x



[
··x
··θ] =

(ml2)(F + ml ·θ2 sin(θ) − d ·x + mg cos(θ)sin(θ))
Δ

(−ml cos(θ))(F + ml ·θ2 sin(θ) − d ·x) − (M + m)mgl sin(θ)
Δ

Inverted pendulum on a cart
Linearize the nonlinear system
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𝑥

𝑔

𝑀

𝑚

𝐿

𝑢

𝑑

π − θ

d
dt

x
·x
θ
·θ

=

·x
(ml2)(F + ml ·θ2 sin(θ) − d ·x + mg cos(θ)sin(θ))

Δ
·θ

(−ml cos(θ))(F + ml ·θ2 sin(θ) − d ·x) − (M + m)mgl sin(θ)
Δ

Δ = ml2(M + m(1 − cos2(θ)))
Linearize about:  
x = free, ·x = 0, θ = {0, π}, ·θ = 0

d
dt

x
·x
θ
·θ

=

0 1 0 0
0 − d

M
mg
M 0

0 0 0 1
0 − up d

ML
up(m + M)g

ML 0

x
·x
θ
·θ

+

0
1
M

0
up
ML

F

where up = 1 at  and up = -1 at θ = π θ = 0



Inverted pendulum on a cart
Eigenvalues, Stability, Controllability
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𝑥

𝑔

𝑀

𝑚

𝐿

𝑢

𝑑

π − θ

d
dt

x
·x
θ
·θ

=

0 1 0 0
0 − d

M
mg
M 0

0 0 0 1
0 − up d

ML
up(m + M)g

ML 0

x
·x
θ
·θ

+

0
1
M

0
up
ML

F

Let’s go to Matlab!

• Check nonlinear equations


• Run open-loop simulation


• Check for stability, controllability



Inverted pendulum on a cart
Control Law
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𝑥

𝑔

𝑀

𝑚

𝐿

𝑢

𝑑

π − θ

Let’s go to Matlab!
• Pole placement. 


• Define poles >>eigs = [-1 -1.2 -1.3 -1.4]; 

• K-matrix >>K = place(A,B,eigs)

·y = Ay + Bu System

−K

u y·y = Ay + Bu

·y = (A − BK)y
u = − Ky



Pole Placement

• Python


• K = scipy.signal.place_poles(A,B,poles)1


• Barely stable eigenvalues: not enough control authority


• More negative eigenvalues: faster response, less robust system
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https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.place_poles.html



Linear Quadratic Regulator

• What are the optimal eigenvalues for our system?


• Tradeoff performance and control effort


• Define cost function: 


•
cost of my state being away from setpoint


•  cost of input energy


• Solved using the Ricatti Equation (compute expensive O(n3)


• Matlab >>lqr(A,B,Q,R)

∫
∞

0
(xTQx + uTRu)dt

Q =

1
1

10
100

R = 0.001

Fast Robots 2025



Inverted pendulum on a cart
The controller works!
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𝑥

𝑔

𝑀

𝑚

𝐿

𝑢

𝑑

π − θ

Caveats:

• In simulation


• Pratical issues:


• Imperfect models


• Nonlinear parts: deadband, saturation, etc.


• Partial state feedback



Review
• Linear system:  


• Solution: 


• Eigenvectors: 


•
Eigenvalues: 


• Linear Transform: 


• Solution: 


• Mapping from x to z to x: 


• Stability in continuous time: , stable iff 

·x = Ax

x(t) = eAtx(0)

T = [ξ1 ξ2 . . . ξn]

D =

λ1

λ2
⋱

λn

AT = TD

eAt = eTDT−1t

x(t) = TeDtT−1x(0)

λ = a + ib a < 0
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• Discrete time: , where 


• Stability in discrete time: , stable iff 


• Nonlinear systems: 


• Linearization: 


• Controllability: 


• Reachability


• Controllability Gramian


• Pole Placement


• Optimal Control (LQR)

x(k + 1) = Ãx(k) Ã = eAΔt

λ̃n = Rneinθ R < 1

·x = f(x)

Df
Dx x̄

·x = (A − BK)x
>>[T,D] = eig(A)

>>rank(ctrb(A,B))

>>place(A,B,poles)

>>LQR(A,B,Q,R)


