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Class Action Items

• Lab 5 check in: how is everything going?


• I am hosting additional open hours tomorrow 8:30-11am and Sunday 6-8pm 
(moved from the original 11am-1pm), multiple requests for evening hours


• Tuesday’s class: how are we feeling about probability?
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• Linear systems review


• Eigenvectors and eigenvalues


• Stability


• Discrete time systems


• Linearizing nonlinear systems


• Controllability


• LQR control


• Observability

Linear Systems — where are we?
Fast Robots 2025

·x = Ax+Bu

These should look familiar from:


• MATH2940 Linear Algebra


• ECE3250 Signals and Systems


• ECE5210 Theory of Linear Systems


• MAE3260 System Dynamics


• and many others…Based on “Control Bootcamp”, Steve Brunton, UW

https://www.youtube.com/watch?v=Pi7l8mMjYVE 

https://www.youtube.com/watch?v=Pi7l8mMjYVE


Review of the Review
• Linear system:  


• Solution: 


• Eigenvectors: 


•
Eigenvalues: 


• Linear Transform: 


• Solution: 


• Mapping from x to z to x: 


• Stability in continuous time: , stable iff 

·x = Ax

x(t) = eAtx(0)

T = [ξ1 ξ2 . . . ξn]

D =

λ1

λ2
⋱

λn

AT = TD

eAt = eTDT−1t

x(t) = TeDtT−1x(0)

λ = a + ib a < 0
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• Discrete time: , where 


• Stability in discrete time: , stable iff 


• Nonlinear systems: 


• Linearization: 


• Controllability: 


• Reachability


• Controllability Gramian


• Pole Placement


• Optimal Control (LQR)

x(k + 1) = Ãx(k) Ã = eAΔt

λ̃n = Rneinθ R < 1

·x = f(x)

Df
Dx x̄

·x = (A − BK)x
>>[T,D] = eig(A)

>>rank(ctrb(A,B))

>>place(A,B,poles)

>>LQR(A,B,Q,R)



Controllability

• Is the system controllable?


• A system is controllable if you can steer 
your state  anywhere you want in 


• Matlab >>rank(ctrb(A,B))


• How do we design the control law, ?

x ℝn

u

−Kx

·x = Ax + Bu
System y = xu
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·x = Ax − BKx

·x = Ax + Bu x ∈ ℝn

A ∈ ℝn×n

u ∈ ℝq

B ∈ ℝn×q

·x = (A − BK)x
New dynamics

A linear controller (K matrix) can be optimal for linear systems!

“full state feedback”



Linear Quadratic Regulator

• What are the optimal eigenvalues for our system?


• Tradeoff performance and control effort


• Define cost function: 


•
cost of my state being away from setpoint


•  cost of input energy


• Solved using the Ricatti Equation (compute expensive O(n3)


• Matlab >>K = lqr(A,B,Q,R)

∫
∞

0
(xTQx + uTRu)dt

Q =

1
1

10
100

R = 0.001
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Inverted pendulum on a cart
The controller works!
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𝑥

𝑔

𝑀

𝑚

𝐿

𝑢

𝑑

π − θ

Caveats:

• In simulation


• Practical issues:


• Imperfect models


• Nonlinear parts: deadband, saturation, etc.


• Partial state feedback



• Linear systems review


• Eigenvectors and eigenvalues


• Stability


• Discrete time systems


• Linearizing nonlinear systems


• Controllability


• LQR control


• Observability

Linear Systems — where are we?
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·x = Ax+Bu

These should look familiar from:


• MATH2940 Linear Algebra


• ECE3250 Signals and Systems


• ECE5210 Theory of Linear Systems


• MAE3260 System Dynamics


• and many others…



Observability
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Observability

• Controllability


• Can we steer the system anywhere we 
want given some control input ?


• Observability


• Can we estimate any state , from a time 
series of measurements ?

u

x
y(t)

y = Cx

Fast Robots 2025

u = − Kx

·x = Ax + Bu x ∈ ℝn

·x = (A − BK)x

̂x

x·x = Ax + Bu
System

u

LQR
u = − Kxu = − K ̂x

y

KF



Observability

•



• Observable iff rank( ) = n

•>>rank(obsv(A,C)) 

• Iff a system is observable, we can estimate x 
from y. We can find the best estimates using 
the observability gramian

•>>[U, S, V] = svd(O)

𝒪 =

C
CA
CA2

⋮
CAn−1

𝒪
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y = Cx
·x = Ax + Bu x ∈ ℝn

u ∈ ℝq

y ∈ ℝp

ℂ = [B AB A2B … An−1B]
>>rank(ctrb(A,B)) 

• Reachability

disturbance

noise

System

LQR KF

𝜉1

𝜉2

𝜉3



Kalman Filter
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Why sensor fusion? 
• Partial state feedback

• Bad sensors

• Imperfect model

• Slow feedback

SystemPID

KF

setpoint e u y

KF with PID

SystemLQR

KF

setpoint u
y

disturbance

noise

Typical KF application



Probabilistic Robotics
• Sources of uncertainty

• Measurements

• Actions

• Models

• States
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• Gaussian distributions


• 

• Symmetric

• Unimodal

• Sum to “unity”

[μ ± σ]
13

Accelerometer

x-axis
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Kalman Filter

• Incorporate uncertainty to get better estimates based on both inputs and 
observations


• Assume that posterior and prior belief are Gaussian variables

pr
ior

 st
at

e
pr

ed
ict

ed
 

sta
te ob

se
rva

tio
ns

KF
  

es
tim

at
io

n
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Kalman Filter

• Assume that posterior and prior belief are Gaussian  
variables

• Prediction step

• , where


• 


• 


• Update step


• 


• 


•

x(t) = Ax(t − 1) + Bu(t) + n
μp(t) = Aμ(t − 1) + Bu(t)
Σp(t) = AΣ(t − 1)AT + Σu

KKF = Σp(t)CT(CΣp(t)CT + Σz)−1

μ(t) = μp(t) + KKF(z(t) − Cμp(t))
Σ(t) = (I − KKFC)Σp(t) pr

ior
 st

at
e

pr
ed

ict
ed

 
sta

te

System

LQR KF

disturbance

Fast Robots 2025

State estimate: 

State uncertainty: 

Process noise: 

Kalman filter gain: 

Measurement noise: 

μ(t)
Σ(t)

Σu
KKF

Σz



Kalman Filter

• Assume that posterior and prior belief are Gaussian  
variables

• Prediction step

• , where


• 


• 


• Update step


• 


• 


•

x(t) = Ax(t − 1) + Bu(t) + n
μp(t) = Aμ(t − 1) + Bu(t)
Σp(t) = AΣ(t − 1)AT + Σu

KKF = Σp(t)CT(CΣp(t)CT + Σz)−1

μ(t) = μp(t) + KKF(z(t) − Cμp(t))
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State estimate: 

State uncertainty: 

Process noise: 

Kalman filter gain: 

Measurement noise: 

μ(t)
Σ(t)

Σu
KKF

Σz



Kalman Filter
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State estimate: 

State uncertainty: 

Process noise: 

Kalman filter gain: 

Measurement noise: 

μ(t)
Σ(t)

Σu
KKF

Σzprediction

update

Function ( )

1. 


2. 


3. 


4. 


5. 


6. Return  and 

μ(t − 1), Σ(t − 1), u(t), z(t)
μp(t) = Aμ(t − 1) + Bu(t)
Σp(t) = AΣ(t − 1)AT + Σu

KKF = Σp(t)CT(CΣp(t)CT + Σz)−1

μ(t) = μp(t) + KKF(z(t) − Cμp(t))
Σ(t) = (I − KKFC)Σp(t)

μ(t) Σ(t)



Kalman Filter
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State estimate: 

State uncertainty: 

Process noise: 

Kalman filter gain: 

Measurement noise: 

μ(t)
Σ(t)

Σu
KKF

Σz

Σu = [σ2
1 0

0 σ2
2], Σz = σ2

3

Example process and measurement noise  
covariance matrices:

Kalman Filter ( )

1. 


2. 


3. 


4. 


5. 


6. Return  and 

μ(t − 1), Σ(t − 1), u(t), z(t)
μp(t) = Aμ(t − 1) + Bu(t)
Σp(t) = AΣ(t − 1)AT + Σu

KKF = Σp(t)CT(CΣp(t)CT + Σz)−1

μ(t) = μp(t) + KKF(z(t) − Cμp(t))
Σ(t) = (I − KKFC)Σp(t)

μ(t) Σ(t)

prediction

update
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State estimate: 

State uncertainty: 

Process noise: 

Kalman filter gain: 

Measurement noise: 

μ(t)
Σ(t)

Σu
KKF

Σz

Σu = [σ2
1 0

0 σ2
2], Σz = σ2

3

Example process and measurement noise  
covariance matrices:

Kalman Filter ( )

1. 


2. 


3. 


4. 


5. 


6. Return  and 

μ(t − 1), Σ(t − 1), u(t), z(t)
μp(t) = Aμ(t − 1) + Bu(t)
Σp(t) = AΣ(t − 1)AT + Σu

KKF = Σp(t)CT(CΣp(t)CT + Σz)−1

μ(t) = μp(t) + KKF(z(t) − Cμp(t))
Σ(t) = (I − KKFC)Σp(t)

μ(t) Σ(t)

prediction

update



Kalman Filter vs Bayes Filter

• Bayes Filter


• Kalman Filter uses the same idea, but uses Gaussian variables for posterior and 
prior beliefs to speed up computation

Fast Robots 2025

Bayes Filter(bel(xt-1),ut,zt) 

1. for all x(t) do 

2. bel(x(t)) = 𝚺(x(t-1)p(x(t)|u(t),x(t-1))bel(x(t-1)) 

3. bel(x(t)) = ⍺ p(z(t)|x(t))bel(x(t)) 
4. end for 

5. return bel(xt)



Lab 5-8: PID control — Sensor Fusion — Stunt

• Labs 5 and 6: get basic PID to work, consider sampling time, start slow


• Lab 7: Sensor Fusion (model + ToF to get quick estimates of distance from the wall)


• Perform a step response with the robot and build the state space equations


• Estimate covariance matrices for process and sensor noise


• Try the Kalman Filter in Jupyter with your own data from Lab 5


• Implement the Kalman Filter on your robot


• Lab 8: Use KF + PID to execute fast stunts

Fast Robots 2025



Lab 7: Kalman Filter
Fast Robots 2025

[ ·x
··x] = [

0 1
0 − d

m ] [x
·x] + [

0
1
m ] u

C = [−1 0]

[x
·x]

𝒙

𝒖

F = ma = m··x
F = u − ·x
m··x = u − d ·x
··x =

u
m

−
d
m

·x

What are d and m?

State space equations
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[ ·x
··x] = [

0 1
0 − d

m ] [x
·x] + [

0
1
m ] u

C = [−1 0]

[x
·x]

𝒙

𝒖

0 =
u
m

−
d
m

·x d =
u
·x

At constant speed, we can find d:

F = ma = m··x
F = u − ·x
m··x = u − d ·x
··x =

u
m

−
d
m

·x

State space equations

What are d and m?



ve
l [

m
m

/s
]

[s]

Lab 7: Kalman Filter
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x̄ = [x
·x]

𝒙

𝒖

24

PW
M

[s]

TO
F 

[m
m

]

[s]

F = ma = m··x
F = u − ·x
m··x = u − d ·x
··x =

u
m

−
d
m

·x

What are d and m?
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F = ma = m··x
F = u − ·x
m··x = u − d ·x
··x =

u
m

−
d
m

·x

x̄ = [x
·x]

𝒙

𝒖

[ ·x
··x] = [

0 1
0 − d

m ] [x
·x] + [

0
1
m ] u

C = [−1 0]

0 =
u
m

−
d
m

·x d =
u
·x

At constant speed, we can find d:

d ≈
1

2000mm/s

(assume u=1 for now)

State space equations

What are d and m?
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F = ma = m··x
F = u − ·x
m··x = u − d ·x
··x =

u
m

−
d
m

·x

x̄ = [x
·x]

𝒙

𝒖

[ ·x
··x] = [

0 1
0 − d

m ] [x
·x] + [

0
1
m ] u

C = [−1 0]

·v =
u
m

−
d
m

v

Use the rise time to determine m

v = 1 − e− d
m t0.9 ln(1 − v) = −

d
m

t0.9

m =
−dt0.9

ln(1 − 0.9)

1st order system:





Unit step response solution:


dy(t)
dt

+
1
τ

y(t) = x(t)

y(t) = 1 − e− t
τ

State space equations

What are d and m?
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F = ma = m··x
F = u − ·x
m··x = u − d ·x
··x =

u
m

−
d
m

·x

x̄ = [x
·x]

𝒙

𝒖

[ ·x
··x] = [

0 1
0 − d

m ] [x
·x] + [

0
1
m ] u

C = [−1 0]

·ν =
u
m

−
d
m

ν

ν = 1 − e− d
m t0.9

Use the rise time to determine m

ln(1 − ν) = −
d
m

t0.9

m =
−dt0.9

ln(1 − 0.9)

1st order system:





Unit step response solution:


dy(t)
dt

+
1
τ

y(t) = x(t)

y(t) = 1 − e− t
τ

What are d and m?
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F = ma = m··x
F = u − ·x
m··x = u − d ·x
··x =

u
m

−
d
m

·x

x̄ = [x
·x]

𝒙

𝒖

[ ·x
··x] = [

0 1
0 − d

m ] [x
·x] + [

0
1
m ] u

C = [−1 0]

·v =
u
m

−
d
m

v

v = 1 − e− d
m t0.9

Use the rise time to determine m

ln(1 − v) = −
d
m

t0.9

m =
−dt0.9

ln(1 − 0.9)
=

−0.0005 ⋅ 1.9
ln(0.1)

= 4.1258 ⋅ 10−4

1st order system:





Unit step response solution:


dy(t)
dt

+
1
τ

y(t) = x(t)

y(t) = 1 − e− t
τ

State space equations

What are d and m?
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F = ma = m··x
F = u − ·x
m··x = u − d ·x
··x =

u
m

−
d
m

·x

[x
·x]

𝒙

𝒖

[ ·x
··x] = [

0 1
0 − d

m ] [x
·x] + [

0
1
m ] u

C = [−1 0]

We can use the rise time to find m

m =
−dt0.9

ln(1 − 0.9)
≈ 4.1258 ⋅ 10−4

At steady state (constant speed) we can find d

d =
u
·x

≈ 0.0005
State space equations

What are d and m?

(assume u=1 for now)



Lab 7: Kalman Filter
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[x
·x]

𝒙

𝒖

[ ·x
··x] = [

0 1
0 − d

m ] [x
·x] + [

0
1
m ] u

C = [−1 0]

• We have 


• Discretize the A and B matrices


• 


• 


• 


• 


•  is our sampling time (0.130s)


• Rescale from unity input to actual input

A, B, C, Σu, Σz

x(n + 1) = x(n) + dx
dx/dt = Ax + Bu ⟺ dx = dt(Ax + Bu)
x(n + 1) = x(n) + dt(Ax(n) + Bu)
x(n + 1) = (I + dt ⋅ A)x(n) + dt ⋅ Bu

dt

Ad Bd

State space equations



Lab 7: Kalman Filter
Implement the Kalman Filter
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Kalman Filter ( )

1. 


2. 


3. 


4. 


5. 


6. Return  and 

μ(t − 1), Σ(t − 1), u(t), z(t)
μp(t) = Aμ(t − 1) + Bu(t)
Σp(t) = AΣ(t − 1)AT + Σu

KKF = Σp(t)CT(CΣp(t)CT + Σz)−1

μ(t) = μp(t) + KKF(z(t) − Cμp(t))
Σ(t) = (I − KKFC)Σp(t)

μ(t) Σ(t)

Next, determine measurement 
and process noise
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𝒙

𝒖

• Measurement noise


• 


• 

• Process noise (dependent on sampling rate)


• 


• Trust in modeled position:


• Posstddev after 1s: 


• Trust in modeled speed:


• Speedstddev after 1s: 

Σz = [σ2
3]

σ2
3 = (20mm)2

Σu = [σ2
1 0

0 σ2
2]

102 ⋅
1

0.13
= 27.7mm

102 ⋅
1

0.13
= 27.7mm/s

Implement the Kalman Filter

x̄ = [x
·x]

Sample time ~0.13s 



Lab 7: Kalman Filter
Implement the Kalman Filter
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Kalman Filter ( )

1. 


2. 


3. 


4. 


5. 


6. Return  and 

μ(t − 1), Σ(t − 1), u(t), z(t)
μp(t) = Aμ(t − 1) + Bu(t)
Σp(t) = AΣ(t − 1)AT + Σu

KKF = Σp(t)CT(CΣp(t)CT + Σz)−1

μ(t) = μp(t) + KKF(z(t) − Cμp(t))
Σ(t) = (I − KKFC)Σp(t)

μ(t) Σ(t)

Finally, determine your initial state 
mean and covariance

μ(t − 1)
Σ(t − 1)



Lab 7: Kalman Filter
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PI control 
Deadband = 35

Setpoint = 300 Kalman Filter


Original data
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