Observability Fast Robots, ECE4160/5160, MAE 4190/5190

E. Farrell Helbling, 3/6/25

Class Action Items

- Lab 5 check in: how is everything going?
- I am hosting additional open hours tomorrow 8:30-11am and Sunday 6-8pm (moved from the original 11am-1pm), multiple requests for evening hours
- Tuesday's class: how are we feeling about probability?

Linear Systems — where are we?

- Linear systems review
- Eigenvectors and eigenvalues
- Stability
- Discrete time systems
- Linearizing nonlinear systems
- Controllability
- LQR control
- Observability

Based on "Control Bootcamp", Steve Brunton, UW https://www.youtube.com/watch?v=Pi7l8mMjYVE

Fast Robots 2025

$$\dot{x} = Ax + Bu$$

These should look familiar from:

- MATH2940 Linear Algebra
- ECE3250 Signals and Systems
- ECE5210 Theory of Linear Systems
- MAE3260 System Dynamics
- and many others...

Review of the Review

- Linear system: $\dot{x} = Ax$
- Solution: $x(t) = e^{At}x(0)$
- Eigenvectors: $T = \begin{bmatrix} \xi_1 & \xi_2 & \dots & \xi_n \end{bmatrix}$

Eigenvalues: $D = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$

>>[T,D] = eig(A)

- Linear Transform: AT = TD
- Solution: $e^{At} = e^{TDT^{-1}t}$
- Mapping from x to z to x: $x(t) = Te^{Dt}T^{-1}x(0)$
- **Optimal Control (LQR)** |>>LQR (A, B, Q, R) • Stability in continuous time: $\lambda = a + ib$, stable iff a < 0

 λ_n

Fast Robots 2025

- Discrete time: $x(k + 1) = \tilde{A}x(k)$, where $\tilde{A} = e^{A\Delta t}$
- Stability in discrete time: $\tilde{\lambda}^n = R^n e^{in\theta}$, stable iff R
- Nonlinear systems: $\dot{x} = f(x)$

• Linearization: $\frac{DJ}{Dx}$

- Controllability: $\dot{x} = (A BK)x$ |>>rank(ctrb(A, B))
- Reachability
- **Controllability Gramian**
- Pole Placement |>>place(A,B,poles)

2	<	1

Controllability

- Is the system controllable? \bullet
 - A system is controllable if you call your state x anywhere you want in
 - Matlab >>rank(ctrb(A, B))
- How do we design the control law,

Fast Robots 2025

$$\dot{x} = Ax + Bu \qquad x \in \mathbb{R}$$
$$\dot{x} = Ax - BKx \qquad A \in \mathbb{R}$$
$$\dot{x} = (A - BK)x \qquad u \in \mathbb{R}$$
n steer
n \mathbb{R}^n
New dynamics $B \in \mathbb{R}^n$
$$u? \qquad \underbrace{u}_{k=Ax+Bu}_{k=Ax+Bu} \qquad \underbrace{y=x}_{\text{"full state feedb}}$$

A linear controller (K matrix) can be optimal for linear systems!

Linear Quadratic Regulator

- What are the optimal eigenvalues for our system? •
 - Tradeoff performance and control effort

- R = 0.001 cost of input energy
- Solved using the Ricatti Equation (compute expensive O(n³)
- Matlab >>K = lqr(A, B, Q, R)

Inverted pendulum on a cart The controller works!

Caveats:

- In simulation
- Practical issues:
 - Imperfect models
 - Nonlinear parts: deadband, saturation, etc.
 - Partial state feedback

Linear Systems — where are we?

- Linear systems review
- Eigenvectors and eigenvalues
- Stability
- Discrete time systems
- Linearizing nonlinear systems
- Controllability
- LQR control
- Observability

Fast Robots 2025

$$\dot{x} = Ax + Bu$$

These should look familiar from:

- MATH2940 Linear Algebra
- ECE3250 Signals and Systems
- ECE5210 Theory of Linear Systems
- MAE3260 System Dynamics
- and many others...

Observability

Observability

- Controllability lacksquare
 - Can we steer the system anywhere we want given some control input u?
- Observability
 - Can we estimate any state x, from a time series of measurements y(t)?

$$\dot{x} = Ax + Bu \qquad x \in \mathbb{R}$$
$$u = -Kx$$
$$\dot{x} = (A - BK)x$$

• Observable iff rank(\mathcal{O}) = n

• >>rank(obsv(A,C))

• Iff a system is observable, we can estimate x from y. We can find the best estimates using the observability gramian

• >> [U, S, V] = svd(\mathcal{O})

KF with **PID**

Fast Robots 2025

Why sensor fusion?

- Partial state feedback
- Bad sensors
- Imperfect model
- Slow feedback

noise

Probabilistic Robotics

- Sources of uncertainty
 - Measurements
 - Actions
 - Models
 - States

- Gaussian distributions
 - $[\mu \pm \sigma]$
 - Symmetric
 - Unimodal
 - Sum to "unity"

- observations
 - Assume that posterior and prior belief are Gaussian variables

Fast Robots 2025

Incorporate uncertainty to get better estimates based on both inputs and

 Assume that posterior and prior belief are Gaussian variables

Fast Robots 2025

State estimate: $\mu(t)$

Process noise: Σ_{μ}

State uncertainty: $\Sigma(t)$

- Assume that posterior and prior belief are Gaussian variables
 - Prediction step
 - x(t) = Ax(t-1) + Bu(t) + n, where
 - $\mu_p(t) = A\mu(t-1) + Bu(t)$
 - $\Sigma_p(t) = A\Sigma(t-1)A^T + \Sigma_u$
 - Update step
 - $K_{KF} = \Sigma_p(t)C^T(C\Sigma_p(t)C^T + \Sigma_z)^{-1}$
 - $\mu(t) = \mu_p(t) + K_{KF}(z(t) C\mu_p(t))$
 - $\Sigma(t) = (I K_{KF}C)\Sigma_p(t)$

Fast Robots 2025

State

6

X S

Drio,

0.8

0.6

0.4

0.2

8

Kalman Filter
Function
$$(\mu(t-1), \Sigma(t-1), u(t), z(t))$$

1. $\mu_p(t) = A\mu(t-1) + Bu(t)$
2. $\Sigma_p(t) = A\Sigma(t-1)A^T + \Sigma_u$
3. $K_{KF} = \Sigma_p(t)C^T(C\Sigma_p(t)C^T + \Sigma_z)$
4. $\mu(t) = \mu_p(t) + K_{KF}(z(t) - C\mu_p(t))$
5. $\Sigma(t) = (I - K_{KF}C)\Sigma_p(t)$
6. Return $\mu(t)$ and $\Sigma(t)$

—

Fast Robots 2025

0.2

covariance matrices:

Kalman Filter
$$(\mu(t-1), \Sigma(t-1), u(t), I)$$

1. $\mu_p(t) = A\mu(t-1) + Bu(t)$
2. $\Sigma_p(t) = A\Sigma(t-1)A^T + \Sigma_u$
3. $K_{KF} = \Sigma_p(t)C^T(C\Sigma_p(t)C^T + \Sigma_z)$
4. $\mu(t) = \mu_p(t) + K_{KF}(z(t) - C\mu_p(t))$
5. $\Sigma(t) = (I - K_{KF}C)\Sigma_p(t)$
6. Return $\mu(t)$ and $\Sigma(t)$

Example process and measurement noise $\Sigma_{u} = \begin{bmatrix} \sigma_{1}^{2} & 0 \\ 0 & \sigma_{2}^{2} \end{bmatrix}, \ \Sigma_{z} = \sigma_{3}^{2}$ covariance matrices:

Fast Robots 2025

3

4

5

6

8

Kalman Filter vs Bayes Filter

- Bayes Filter
- prior beliefs to speed up computation

Bayes Filter(bel(
$$x_{t-1}$$
), u_t , z
1. for all $x(t)$ do
2. $\overline{bel}(x(t)) = \Sigma(x(t-1))$
3. $bel(x(t)) = \alpha p(z(t))$
4. end for
5. return bel(x_t)

Fast Robots 2025

Kalman Filter uses the same idea, but uses Gaussian variables for posterior and

z_t)

p(x(t) | u(t), x(t-1)) bel(x(t-1))x(t))bel(x(t))

Lab 5-8: PID control — Sensor Fusion — Stunt

- Labs 5 and 6: get basic PID to work, consider sampling time, start slow
- Lab 7: Sensor Fusion (model + ToF to get quick estimates of distance from the wall)
 - Perform a step response with the robot and build the state space equations
 - Estimate covariance matrices for process and sensor noise
 - Try the Kalman Filter in Jupyter with your own data from Lab 5
 - Implement the Kalman Filter on your robot
- Lab 8: Use KF + PID to execute fast stunts

$$F = ma = m\ddot{x}$$
$$F = u - \dot{x}$$
$$m\ddot{x} = u - d\dot{x}$$
$$\dddot{x} = \frac{u}{m} - \frac{d}{m}\dot{x}$$

What are d and m?

$$F = ma = m\ddot{x}$$
$$F = u - \dot{x}$$
$$m\ddot{x} = u - d\dot{x}$$
$$\dddot{x} = \frac{u}{m} - \frac{d}{m}\dot{x}$$

What are d and m?

At constant speed, we can find d:

$$0 = \frac{u}{m} - \frac{d}{m}\dot{x} \qquad d = \frac{u}{\dot{x}}$$

State space equations

$$\begin{bmatrix} \dot{x} \\ \dot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -\frac{d}{m} \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix}$$

$$C = \begin{bmatrix} -1 & 0 \end{bmatrix}$$

$$F = ma = m\ddot{x}$$
$$F = u - \dot{x}$$
$$m\ddot{x} = u - d\dot{x}$$
$$\dddot{x} = \frac{u}{m} - \frac{d}{m}\dot{x}$$

$$F = ma = m\ddot{x}$$
$$F = u - \dot{x}$$
$$m\ddot{x} = u - d\dot{x}$$
$$\dddot{x} = \frac{u}{m} - \frac{d}{m}\dot{x}$$

What are d and m?

At constant speed, we can find d:

$$0 = \frac{u}{m} - \frac{d}{m}\dot{x} \qquad d = \frac{u}{\dot{x}}$$

(assume u=1 for now)
$$d \approx \frac{1}{2000 \text{ mm/s}}$$

State space equations

$$\begin{bmatrix} \dot{x} \\ \dot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -\frac{d}{m} \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix}$$

$$C = \begin{bmatrix} -1 & 0 \end{bmatrix}$$

$$F = ma = m\ddot{x}$$
$$F = u - \dot{x}$$
$$m\ddot{x} = u - d\dot{x}$$
$$\dddot{x} = \frac{u}{m} - \frac{d}{m}\dot{x}$$

1st order syste

$$dy(t)$$
 1
 $dt(t)$
 $+$
 dt
 τ

 Unit step respondent

 $y(t) = 1 - e^{-\frac{t}{\tau}}$

What are d and m?

Use the rise time to determine m

$$\dot{v} = \frac{u}{m} - \frac{d}{m}v$$

$$v = 1 - e^{-\frac{d}{m}t_{0.9}} \quad \ln(1 - v) = -\frac{d}{m}t_{0.9}$$

$$m = \frac{-dt_{0.9}}{\ln(1 - 0.9)}$$

Fast Robots 2025

State space equations $\begin{bmatrix} \dot{x} \\ \dot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -\frac{d}{m} \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix}$ $C = \begin{bmatrix} -1 & 0 \end{bmatrix}$

$$F = ma = m\ddot{x}$$
$$F = u - \dot{x}$$
$$m\ddot{x} = u - d\dot{x}$$
$$\ddot{x} = \frac{u}{m} - \frac{d}{m}\dot{x}$$

1st order syste

$$\frac{dy(t)}{dt} + \frac{1}{\tau}y(t)$$

$$\frac{1}{\tau}y(t) = 1 - e^{-\frac{t}{\tau}}$$

$$F = ma = m\ddot{x}$$
$$F = u - \dot{x}$$
$$m\ddot{x} = u - d\dot{x}$$
$$\dddot{x} = \frac{u}{m} - \frac{d}{m}\dot{x}$$

1st order syste

$$dy(t)$$
 1

 $dt(t)$
 + $\tau y(t)$
 dt
 τ

 Unit step response

 $y(t) = 1 - e^{-\frac{t}{\tau}}$

What are d and m?

Use the rise time to determine m

$$\dot{v} = \frac{u}{m} - \frac{d}{m}v$$

$$v = 1 - e^{-\frac{d}{m}t_{0.9}} \qquad \ln(1 - v) = -\frac{d}{m}t_{0.9}$$

$$m = \frac{-dt_{0.9}}{\ln(1 - 0.9)} = \frac{-0.0005 \cdot 1.9}{\ln(0.1)} = \frac{-0.0005 \cdot 1.9}{\ln(0.1)}$$

Fast Robots 2025

State space equations $\begin{bmatrix} \dot{x} \\ \dot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -\frac{d}{m} \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix}$ $C = \begin{bmatrix} -1 & 0 \end{bmatrix}$

$$F = ma = m\ddot{x}$$
$$F = u - \dot{x}$$
$$m\ddot{x} = u - d\dot{x}$$
$$\dddot{x} = \frac{u}{m} - \frac{d}{m}\dot{x}$$

What are d and m?

At steady state (constant speed) we can find d (assume u=1 for now) $d = \frac{u}{\dot{x}} \approx 0.0005$

We can use the rise time to find m

$$m = \frac{-dt_{0.9}}{\ln(1 - 0.9)} \approx 4.1258 \cdot 10^{-4}$$

State space equations

$$\begin{bmatrix} \dot{x} \\ \dot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -\frac{d}{m} \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix}$$

$$C = \begin{bmatrix} -1 & 0 \end{bmatrix}$$

- We have $A, B, C, \Sigma_{\mu}, \Sigma_{\tau}$
- Discretize the A and B matrices
 - x(n + 1) = x(n) + dx
 - $dx/dt = Ax + Bu \iff dx = dt(Ax + Bu)$
 - x(n + 1) = x(n) + dt(Ax(n) + Bu)
 - $x(n+1) = (I + dt \cdot A)x(n) + dt \cdot Bu$ A_d
 - *dt* is our sampling time (0.130s)
- Rescale from unity input to actual input

Fast Robots 2025

State space equations $\begin{vmatrix} 0 & 1 \\ 0 & -\frac{d}{2} \end{vmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \begin{vmatrix} 0 \\ 1 \\ \frac{1}{2} \end{vmatrix}$ $m \$ $C = [-1 \ 0]$

Lab 7: Kalman Filter Implement the Kalman Filter

Kalman Filter (
$$\mu(t - 1), \Sigma(t - 1), u(t), z(t)$$
)
1. $\mu_p(t) = A\mu(t - 1) + Bu(t)$
2. $\Sigma_p(t) = A\Sigma(t - 1)A^T + \Sigma_u$
3. $K_{KF} = \Sigma_p(t)C^T(C\Sigma_p(t)C^T + \Sigma_z)^{-1}$
4. $\mu(t) = \mu_p(t) + K_{KF}(z(t) - C\mu_p(t))$
5. $\Sigma(t) = (I - K_{KF}C)\Sigma_p(t)$
6. Return $\mu(t)$ and $\Sigma(t)$

Fast Robots 2025

Next, determine measurement and process noise

```
f kf(mu,sigma,u,y):
```

```
mu_p = A.dot(mu) + B.dot(u)
sigma_p = A.dot(sigma.dot(A.transpose())) + Sigma_u
sigma_m = C.dot(sigma_p.dot(C.transpose())) + Sigma_z
kkf_gain = sigma_p.dot(C.transpose().dot(np.linalg.inv(sigma_m)))
y_m = y-C.dot(mu_p)
mu = mu_p + kkf_gain.dot(y_m)
sigma=(np.eye(2)-kkf_gain.dot(C)).dot(sigma_p)
```

return mu,sigma

Lab 7: Kalman Filter **Implement the Kalman Filter**

Measurement noise lacksquare

•
$$\Sigma_z = [\sigma_3^2]$$

• $\sigma_3^2 = (20 \text{mm})^2$

Process noise (dependent on sampling rate)

$$\Sigma_{u} = \begin{bmatrix} \sigma_{1}^{2} & 0 \\ 0 & \sigma_{2}^{2} \end{bmatrix}$$
 Sample

- Trust in modeled position:
 - Pos_{stddev} after 1s: $\sqrt{10^2 \cdot \frac{1}{0.13}} = 27.7 \text{mm}$
- Trust in modeled speed:
 - Speed_{stddev} after 1s: $\sqrt{10^2 \cdot \frac{1}{0.13}} = 27.7 \text{mm/s}$

Lab 7: Kalman Filter Implement the Kalman Filter

Kalman Filter (
$$\mu(t - 1), \Sigma(t - 1), u(t), z(t)$$
)
1. $\mu_p(t) = A\mu(t - 1) + Bu(t)$
2. $\Sigma_p(t) = A\Sigma(t - 1)A^T + \Sigma_u$
3. $K_{KF} = \Sigma_p(t)C^T(C\Sigma_p(t)C^T + \Sigma_z)^{-1}$
4. $\mu(t) = \mu_p(t) + K_{KF}(z(t) - C\mu_p(t))$
5. $\Sigma(t) = (I - K_{KF}C)\Sigma_p(t)$
6. Return $\mu(t)$ and $\Sigma(t)$

Fast Robots 2025

Finally, determine your initial state mean and covariance

$$\mu(t-1)$$
$$\Sigma(t-1)$$

f kf(mu,sigma,u,y):

```
mu_p = A.dot(mu) + B.dot(u)
    sigma_p = A.dot(sigma.dot(A.transpose())) + Sigma_u
    sigma_m = C.dot(sigma_p.dot(C.transpose())) + Sigma_z
    kkf_gain = sigma_p.dot(C.transpose().dot(np.linalg.inv(sigma_m)))
    y_m = y-C.dot(mu_p)
    mu = mu_p + kkf_gain.dot(y_m)
sigma=(np.eye(2)-kkf_gain.dot(C)).dot(sigma_p)
```

return mu,sigma

