
E. Farrell Helbling, 3/11/25

KF (cont), Local Planners
Fast Robots, ECE4160/5160, MAE 4190/5190

Fast Robots 2025

Class Action Items
• Lab 6 begins this week, looking at orientation control of your robot.

• Good example: either of your TAs (Daria has a great example of a succinct report)

• Good example with DMP: Stephan Wagner

• Please start working with a lab partner. We are entering the robot skills part of this class, it is
highly likely that your robot will break. When this happens, borrow your friends robot. Get the
other working in the meantime so you always have a working robot.

• Regrade requests, submit a comment on your grade on Canvas. You have one week after
grades are posted to do so. I will collate all comments, TAs will respond as needed after the
week.

• We are known to make mistakes (there are many reports to read), but be sure you need

points back, we reserve the right to further deduct points if we find an error in our grading
scheme.

• Lab 1 and Lab 2 regrade requests will close on Sunday midnight.

• Continuing with Kalman Filtering today for your Lab 7, local planners

Fast Robots 2025

Kalman Filter

• Incorporate uncertainty to get better estimates based on both inputs and
observations, assuming that posterior and prior beliefs are Gaussian

pr
ior

 st
at

e
pr

ed
ict

ed

sta
te ob

se
rva

tio
ns

KF
  

es
tim

at
io

n

Fast Robots 2025

System

LQR KF

disturbance

noise

Kalman Filter

pr
ior

 st
at

e
pr

ed
ict

ed

sta
te ob

se
rva

tio
ns

es
tim

at
e

System

LQR KF

disturbance

noise

Fast Robots 2025

State estimate:

State uncertainty:

Process noise:

Kalman filter gain:

Measurement noise:

μ(t)
Σ(t)

Σu
KKF

Σz

Σu = [σ2
1 0

0 σ2
2], Σz = σ2

3

Example process and measurement noise  
covariance matrices:

Kalman Filter ()

1.

2.

3.

4.

5.

6. Return and

μ(t − 1), Σ(t − 1), u(t), z(t)
μp(t) = Aμ(t − 1) + Bu(t)
Σp(t) = AΣ(t − 1)AT + Σu

KKF = Σp(t)CT(CΣp(t)CT + Σz)−1

μ(t) = μp(t) + KKF(z(t) − Cμp(t))
Σ(t) = (I − KKFC)Σp(t)

μ(t) Σ(t)

prediction

update

Lab 7: Kalman Filter
• Define A, B, and C matrices

• System ID on step response

• Sanity check

• Run virtual kalman filter on data from Lab 5 PID

• What is your initial state, and how confident are you in it?

• How much trust do you put in your model versus your sensor values?

• Experiment

• Put less trust in the model

• Put less trust in the sensor

• Start with a bad initial estimate

• Our dynamic model is a bad estimate for the static robot

Fast Robots 2025

Lab 7: Kalman Filter
Fast Robots 2025

[·x
··x] = [

0 1
0 − d

m] [x
·x] + [

0
1
m] u

C = [−1 0]

[x
·x]

𝒙

𝒖

F = ma = m··x
F = u − d ·x
m··x = u − d ·x
··x =

u
m

−
d
m

·x

What are d and m?

State space equations

Lab 7: Kalman Filter
Fast Robots 2025

[·x
··x] = [

0 1
0 − d

m] [x
·x] + [

0
1
m] u

C = [−1 0]

[x
·x]

𝒙

𝒖

0 =
u
m

−
d
m

·x d =
u
·x

At constant speed, we can find d:

F = ma = m··x

m··x = u − d ·x
··x =

u
m

−
d
m

·x

State space equations

What are d and m?

F = u − d ·x

ve
l [

m
m

/s
]

[s]

Lab 7: Kalman Filter
Fast Robots 2025

x̄ = [x
·x]

𝒙

𝒖

8

PW
M

[s]

TO
F

[m
m

]

[s]

F = ma = m··x

m··x = u − d ·x
··x =

u
m

−
d
m

·x

What are d and m?

F = u − d ·x

Lab 7: Kalman Filter
Fast Robots 2025

F = ma = m··x

m··x = u − d ·x
··x =

u
m

−
d
m

·x

x̄ = [x
·x]

𝒙

𝒖

[·x
··x] = [

0 1
0 − d

m] [x
·x] + [

0
1
m] u

C = [−1 0]

0 =
u
m

−
d
m

·x d =
u
·x

At constant speed, we can find d:

d ≈
1

2000mm/s

(assume u=1 for now)

State space equations

What are d and m?

F = u − d ·x

Lab 7: Kalman Filter
Fast Robots 2025

F = ma = m··x

m··x = u − d ·x
··x =

u
m

−
d
m

·x

x̄ = [x
·x]

𝒙

𝒖

[·x
··x] = [

0 1
0 − d

m] [x
·x] + [

0
1
m] u

C = [−1 0]

·v =
u
m

−
d
m

v

Use the rise time to determine m

v = 1 − e− d
m t0.9 ln(1 − v) = −

d
m

t0.9

m =
−dt0.9

ln(1 − 0.9)

1st order system:

Unit step response solution:

dy(t)
dt

+
1
τ

y(t) = x(t)

y(t) = 1 − e− t
τ

State space equations

What are d and m?

F = u − d ·x

Lab 7: Kalman Filter
Fast Robots 2025

F = ma = m··x

m··x = u − d ·x
··x =

u
m

−
d
m

·x

x̄ = [x
·x]

𝒙

𝒖

[·x
··x] = [

0 1
0 − d

m] [x
·x] + [

0
1
m] u

C = [−1 0]

·ν =
u
m

−
d
m

ν

ν = 1 − e− d
m t0.9

Use the rise time to determine m

ln(1 − ν) = −
d
m

t0.9

m =
−dt0.9

ln(1 − 0.9)

1st order system:

Unit step response solution:

dy(t)
dt

+
1
τ

y(t) = x(t)

y(t) = 1 − e− t
τ

What are d and m?

F = u − d ·x

PW
M

[s]

TO
F

[m
m

]

[s]

ve
l

[m
m

/s
]

[s]

Lab 7: Kalman Filter
Fast Robots 2025

F = ma = m··x
F = u − d ·x
m··x = u − d ·x
··x =

u
m

−
d
m

·x

x̄ = [x
·x]

𝒙

𝒖

[·x
··x] = [

0 1
0 − d

m] [x
·x] + [

0
1
m] u

C = [−1 0]

·v =
u
m

−
d
m

v

v = 1 − e− d
m t0.9

Use the rise time to determine m

ln(1 − v) = −
d
m

t0.9

m =
−dt0.9

ln(1 − 0.9)
=

−0.0005 ⋅ 1.9
ln(0.1)

= 4.1258 ⋅ 10−4

1st order system:

Unit step response solution:

dy(t)
dt

+
1
τ

y(t) = x(t)

y(t) = 1 − e− t
τ

State space equations

What are d and m?

Lab 7: Kalman Filter
Fast Robots 2025

F = ma = m··x
F = u − d ·x
m··x = u − d ·x
··x =

u
m

−
d
m

·x

[x
·x]

𝒙

𝒖

[·x
··x] = [

0 1
0 − d

m] [x
·x] + [

0
1
m] u

C = [−1 0]

We can use the rise time to find m

m =
−dt0.9

ln(1 − 0.9)
≈ 4.1258 ⋅ 10−4

At steady state (constant speed) we can find d

d =
u
·x

≈ 0.0005
State space equations

What are d and m?

(assume u=1 for now)

Lab 7: Kalman Filter
Fast Robots 2025

[x
·x]

𝒙

𝒖

[·x
··x] = [

0 1
0 − d

m] [x
·x] + [

0
1
m] u

C = [−1 0]

• We have

• Discretize the A and B matrices

•

•

•

•

• is our sampling time (0.130s)

• Rescale from unity input to actual input

A, B, C

x(n + 1) = x(n) + dx
dx/dt = Ax + Bu ⟺ dx = dt(Ax + Bu)
x(n + 1) = x(n) + dt(Ax(n) + Bu)
x(n + 1) = (I + dt ⋅ A)x(n) + dt ⋅ Bu

dt

Ad Bd

State space equations

Lab 7: Kalman Filter
Implement the Kalman Filter

Fast Robots 2025

Kalman Filter ()

1.

2.

3.

4.

5.

6. Return and

μ(t − 1), Σ(t − 1), u(t), z(t)
μp(t) = Aμ(t − 1) + Bu(t)
Σp(t) = AΣ(t − 1)AT + Σu

KKF = Σp(t)CT(CΣp(t)CT + Σz)−1

μ(t) = μp(t) + KKF(z(t) − Cμp(t))
Σ(t) = (I − KKFC)Σp(t)

μ(t) Σ(t)

Next, determine measurement 
and process noise

Lab 7: Kalman Filter
Fast Robots 2025

𝒙

𝒖

• Measurement noise

•

•

• Process noise (dependent on sampling rate)

•

• Trust in modeled position:

• Posstddev after 1s:

• Trust in modeled speed:

• Speedstddev after 1s:

Σz = [σ2
3]

σ2
3 = (20mm)2

Σu = [σ2
1 0

0 σ2
2]

102 ⋅
1

0.13
= 27.7mm

102 ⋅
1

0.13
= 27.7mm/s

Implement the Kalman Filter

x̄ = [x
·x]

Sample time ~0.13s

Lab 7: Kalman Filter
Implement the Kalman Filter

Fast Robots 2025

Kalman Filter ()

1.

2.

3.

4.

5.

6. Return and

μ(t − 1), Σ(t − 1), u(t), z(t)
μp(t) = Aμ(t − 1) + Bu(t)
Σp(t) = AΣ(t − 1)AT + Σu

KKF = Σp(t)CT(CΣp(t)CT + Σz)−1

μ(t) = μp(t) + KKF(z(t) − Cμp(t))
Σ(t) = (I − KKFC)Σp(t)

μ(t) Σ(t)

Finally, determine your initial state 
mean and covariance

μ(t − 1)
Σ(t − 1)

Lab 7: Kalman Filter
Fast Robots 2025

PI control
Deadband = 35

Setpoint = 300 Kalman Filter

Original data

Task A/B

Po
sit

io
n

w
rt

 w
al

l [
m

m
]

Lab 7: Kalman Filter
• Define A, B, and C matrices

• System ID on step response

• Sanity check

• Run virtual kalman filter on data from Lab 5 PID

• What is your initial state, and how confident are you in it?

• How much trust do you put in your model versus your sensor values?

• Experiment

• Put less trust in the model

• Put less trust in the sensor

• Start with a bad initial estimate

• Our dynamic model is a bad estimate for the static robot

Fast Robots 2025

Linear System Review
• Linear system:

• Solution:

• Eigenvectors:

•
Eigenvalues:

• Linear Transform:

• Solution:

• Mapping from x to z to x:

• Stability in continuous time: , stable iff

·x = Ax

x(t) = eAtx(0)

T = [ξ1 ξ2 . . . ξn]

D =

λ1

λ2
⋱

λn

AT = TD

eAt = eTDT−1t

x(t) = TeDtT−1x(0)

λ = a + ib a < 0

Fast Robots 2025

• Discrete time: , where

• Stability in discrete time: , stable iff

• Nonlinear systems:

• Linearization:

• Controllability:

• Reachability

• Controllability Gramian

• Pole Placement

• Optimal Control (LQR)

x(k + 1) = Ãx(k) Ã = eAΔt

λ̃n = Rneinθ R < 1

·x = f(x)

Df
Dx x̄

·x = (A − BK)x
>>[T,D] = eig(A)

>>rank(ctrb(A,B))

>>place(A,B,poles)

>>LQR(A,B,Q,R)

• Optimal Observer (KF): sensor/model noise

What we’ve covered so far…
• Configuration space and transformations

• Data types

• Sensors

• Actuators/Motors

• Wiring/EMI

• Control

• State space models

• PID/LQR control

• Observers

• Deterministic vs. Probabilistic Robots

• Bayes Theorem

Next up….
Navigation and Planning

Fast Robots 2025

Navigation and Planning

Slides adapted from Vivek Thangavelu

Fast Robots 2025

Navigation
• Problem: Find the path in the workspace from an initial location to a goal location, while

avoiding collisions

• How do you get to your goal?

• Can you see your goal?

• Do you have a map?

• Are obstacles unknown or dynamic?

• Does it matter how fast you get there?

• Does it matter how smooth the path is?

• How much compute power do you have?

• How precise and accurate is your motion control?

• What sensors do you have available?

• etc.

Fast Robots 2025

Navigation
• Problem: Find the path in the workspace from an initial

location to a goal location, while avoiding collisions

• Assumption: A good map for navigation exists

• Global navigation
• Given a map and a goal location,  

find and execute a trajectory that  
brings the robot to the goal

• (Long term plan)

• Local navigation
• Given real-time sensor readings,  

modulate the robot trajectory to  
avoid collisions

• (Short term plan)

Fast Robots 2025

Navigation
• Break the problem down: localization, map building, path planning

Information 
extraction

Raw sensor 
dataPE

R
C

EP
TI

O
N

Path planning

Path

PLAN
N

IN
G

WORLD

Global map and state

ActionSensing Path execution

Actuator 
commands

M
O

TIO
N
 

C
O

N
TR

O
L

Localization

Environmental 
modelES

TI
M

AT
IO

N

Fast Robots 2025

Next module on navigation
• Local planners

• Global localization and planning

• Map representations

• Continuous

• Discrete

• Topological

• Maps as graphs

• Graph search algorithms

• Breadth first search

• Depth first search

• Dijkstras

• A*

Fast Robots 2025

Local Planners

Fast Robots 2025

Local path planning/ obstacle avoidance
• Use goal position, recent sensor readings, and relative position of robot to goal

• Can be based on a local map

• Often implemented as a separate task

• Runs at a much faster rate than the global planner

• 3 examples:

• BUG algorithms

• Vector Field Histogram (VFH)

• Dynamic Window Approach (DWA)

Wagner, ITS 2015

Fast Robots 2025

Bug algorithms
• Uses local knowledge and the direction and distance to the goal

• Basic idea

• Follow the contour of obstacles until you see the goal

• State 1: seek goal

• State 2: follow wall

• Different Variants: Bug0, Bug1, Bug2

• Advantages

• Super simple

• No global map

• Completeness

• Disadvantages

• Suboptimal

Fast Robots 2025

Bug 0
• Sensor Assumptions

• Direction to the goal

• Detect walls

• Algorithm

• Go towards goal

• Follow obstacles until you can 
go towards goal again

• Loop

Howie Choset 16-735

Fast Robots 2025

Bug 0
• Sensor Assumptions

• Direction to the goal

• Detect walls

• Algorithm

• Go towards goal

• Follow obstacles until you can 
go towards goal again

• Loop

Howie Choset 16-735

Fast Robots 2025

Bug 0
• Sensor Assumptions

• Direction to the goal

• Detect walls

• Algorithm

• Go towards goal

• Follow obstacles until you can 
go towards goal again

• Loop

Howie Choset 16-735

Fast Robots 2025

Bug 1
• Sensor Assumptions

• Direction to the goal

• Detect walls

• Odometry

• Algorithm

• Go towards goal

• Follow obstacles and remember
how close you got to the goal

• Return to the closest point, loop

Howie Choset 16-735

Fast Robots 2025

Bug 1
• Sensor Assumptions

• Direction to the goal

• Detect walls

• Odometry

• Algorithm

• Go towards goal

• Follow obstacles and remember
how close you got to the goal

• Return to the closest point, loop

Howie Choset 16-735

Fast Robots 2025

Bug 1 - formally
• Sensor Assumptions

• Direction to the goal

• Detect walls

• Odometry

• Lower bound traversal? d

• Upper bound traversal? d + 1.5∑(Pn)

• Pros?

• If a path exists, it returns in finite time

• It knows if none exist!
Howie Choset 16-735

d

Pn

Fast Robots 2025

Bug 2
• Sensor Assumptions

• Direction to the goal

• Detect walls

• Odometry

• Original vector to the goal

• Algorithm

• Go towards goal on the vector

• Follow obstacles until you are
back on the vector (and closer to
the obstacle)

• Loop Howie Choset 16-735

Fast Robots 2025

Bug 2
• Sensor Assumptions

• Direction to the goal

• Detect walls

• Odometry

• Original vector to the goal

• Algorithm

• Go towards goal on the vector

• Follow obstacles until you are
back on the vector (and closer to
the obstacle)

• Loop Howie Choset 16-735

Fast Robots 2025

Bug 2
• Sensor Assumptions

• Direction to the goal

• Detect walls

• Odometry

• Original vector to the goal

• Algorithm

• Go towards goal on the vector

• Follow obstacles until you are
back on the vector (and closer to
the obstacle)

• Loop Howie Choset 16-735

What is faster, right- or
left- wall following?

Fast Robots 2025

Battle of the bugs (1 vs 2)

https://www.youtube.com/watch?v=T2PVaKyxMmY

Battle of the bugs (1 vs 2)

https://www.youtube.com/watch?v=T2PVaKyxMmY

Exhaustive search Greedy search

Bug algorithms
• Uses local knowledge and the direction and distance to the goal

• Basic idea

• Follow the contour of obstacles until you see the goal

• State 1: seek goal

• State 2: follow wall

• Different Variants: Bug0, Bug1, Bug2

• Advantages

• Super simple

• No global map

• Completeness

• Disadvantages

• Suboptimal

• The robot motion behavior is reactive

• Issues if the instantaneous sensor

readings do not provide enough
information or are noisy

Fast Robots 2025

Vector Field Histograms
• VFH creates a local map of the environment around the

robot populated by “relatively” recent sensor readings

• Build a local 3D grid map reduce to a 1-DOF histogram

• Planning

• Find all openings large enough for robot to pass

• Choose the one with the lowest cost, G

• G = a*goal_direction + b*orientation +c*prev_direction

http://www.personal.umich.edu/~johannb/Papers/paper16.pdf

Fast Robots 2025

Vector Field Histograms
• VFH creates a local map of the environment around the

robot populated by “relatively” recent sensor readings

• Build a local 3D grid map reduce to a 1-DOF histogram

• Planning

• Find all openings large enough for robot to pass

• Choose the one with the lowest cost, G

• G = a*goal_direction + b*orientation +c*prev_direction

• VFH+: incorporate kinematics

• Limitations

• Does not avoid local minima

• Not guaranteed to reach goal

http://www.personal.umich.edu/~johannb/Papers/paper16.pdf

Fast Robots 2025

Dynamic Window Approach
• Search in the velocity space (robot moves in circular arcs)

• Takes into account robot acceleration and update rates

• A dynamic window, Vd, is the set of all tuples (vd, ⍵d) that can be reached

• Admissable velocities, Va, include those where the robot can stop before
collision

• The search space is then

• Cost function:

Vr = Vs ∩ Va ∩ Vd

http://www4.cs.umanitoba.ca/~jacky/
Teaching/Courses/74.795-LocalVision/
ReadingList/fox97dynamic.pdf

Fast Robots 2025

Local Planners
• Bug algorithms

• Inefficient but can be exhaustive

• Vector Field Histograms

• Takes into account probabilistic sensor measurements

• Vector Field Histograms+

• Takes into account probabilistic sensor measurements and robot kinematics

• Dynamic window approach

• Takes into account robot dynamics

Fast Robots 2025

Global localization

Fast Robots 2025

Next module on navigation
• Local planners

• Global localization and planning

• Map representations

• Continuous

• Discrete

• Topological

• Maps as graphs

• Graph search algorithms

• Breadth first search

• Depth first search

• Dijkstras

• A*

Fast Robots 2025

Navigation
• Break the problem down: localization, map building, path planning

Localization

Environmental 
model

Information 
extraction

Raw sensor 
data

Path planning

Path

Path execution

Actuator 
commands

ES
TI

M
AT

IO
N

PE
R

C
EP

TI
O

N
PLAN

N
IN

G
M

O
TIO

N
 

C
O

N
TR

O
L

WORLD

Global map and state

Sensing Action

Fast Robots 2025

Localization Problem
Position Tracking Global Localization

• Initial robot pose is known

• Either deterministically (odometry) or 
through Bayesian statistic (motion and
sensor models)

• It is a “local” problem, as the uncertainty is
local (often small) and confined to a region
near the robot’s true pose

• Initial robot pose is unknown

• Need to estimate position from scratch

• A more difficult “global” problem, 
where you cannot assume boundedness in
pose error

kidnapped robot problem

Fast Robots 2025

Next module on navigation
• Local planners

• Global localization and planning

• Map representations

• Continuous

• Discrete

• Topological

• Maps as graphs

• Graph search algorithms

• Breadth first search

• Depth first search

• Dijkstras

• A*

Fast Robots 2025

Navigation
• Break the problem down: localization, map building, path planning

Localization

Environmental 
model

Information 
extraction

Raw sensor 
data

Path planning

Path

Path execution

Actuator 
commands

ES
TI

M
AT

IO
N

PE
R

C
EP

TI
O

N
PLAN

N
IN

G
M

O
TIO

N
 

C
O

N
TR

O
L

WORLD

Global map and state

Sensing Action

Fast Robots 2025

