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Class Action Items
• Lab 6 begins this week, looking at orientation control of your robot. 

• Good example: either of your TAs (Daria has a great example of a succinct report)

• Good example with DMP: Stephan Wagner


• Please start working with a lab partner. We are entering the robot skills part of this class, it is 
highly likely that your robot will break. When this happens, borrow your friends robot. Get the 
other working in the meantime so you always have a working robot.


• Regrade requests, submit a comment on your grade on Canvas. You have one week after 
grades are posted to do so. I will collate all comments, TAs will respond as needed after the 
week. 

• We are known to make mistakes (there are many reports to read), but be sure you need 

points back, we reserve the right to further deduct points if we find an error in our grading 
scheme.


• Lab 1 and Lab 2 regrade requests will close on Sunday midnight.

• Continuing with Kalman Filtering today for your Lab 7, local planners
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Kalman Filter

• Incorporate uncertainty to get better estimates based on both inputs and 
observations, assuming that posterior and prior beliefs are Gaussian
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State estimate: 

State uncertainty: 

Process noise: 

Kalman filter gain: 

Measurement noise: 

μ(t)
Σ(t)

Σu
KKF

Σz

Σu = [σ2
1 0

0 σ2
2], Σz = σ2

3

Example process and measurement noise  
covariance matrices:

Kalman Filter ( )

1. 


2. 


3. 


4. 


5. 


6. Return  and 

μ(t − 1), Σ(t − 1), u(t), z(t)
μp(t) = Aμ(t − 1) + Bu(t)
Σp(t) = AΣ(t − 1)AT + Σu

KKF = Σp(t)CT(CΣp(t)CT + Σz)−1

μ(t) = μp(t) + KKF(z(t) − Cμp(t))
Σ(t) = (I − KKFC)Σp(t)

μ(t) Σ(t)

prediction

update



Lab 7: Kalman Filter
• Define A, B, and C matrices


• System ID on step response


• Sanity check


• Run virtual kalman filter on data from Lab 5 PID


• What is your initial state, and how confident are you in it?


• How much trust do you put in your model versus your sensor values?


• Experiment

• Put less trust in the model

• Put less trust in the sensor

• Start with a bad initial estimate 

• Our dynamic model is a bad estimate for the static robot
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Lab 7: Kalman Filter
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We can use the rise time to find m

m =
−dt0.9

ln(1 − 0.9)
≈ 4.1258 ⋅ 10−4

At steady state (constant speed) we can find d

d =
u
·x

≈ 0.0005
State space equations

What are d and m?

(assume u=1 for now)
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[x
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m ] u
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• We have 


• Discretize the A and B matrices


• 


• 


• 


• 


•  is our sampling time (0.130s)


• Rescale from unity input to actual input

A, B, C

x(n + 1) = x(n) + dx
dx/dt = Ax + Bu ⟺ dx = dt(Ax + Bu)
x(n + 1) = x(n) + dt(Ax(n) + Bu)
x(n + 1) = (I + dt ⋅ A)x(n) + dt ⋅ Bu

dt

Ad Bd

State space equations



Lab 7: Kalman Filter
Implement the Kalman Filter

Fast Robots 2025

Kalman Filter ( )
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5. 


6. Return  and 

μ(t − 1), Σ(t − 1), u(t), z(t)
μp(t) = Aμ(t − 1) + Bu(t)
Σp(t) = AΣ(t − 1)AT + Σu

KKF = Σp(t)CT(CΣp(t)CT + Σz)−1

μ(t) = μp(t) + KKF(z(t) − Cμp(t))
Σ(t) = (I − KKFC)Σp(t)

μ(t) Σ(t)

Next, determine measurement 
and process noise



Lab 7: Kalman Filter
Fast Robots 2025

𝒙

𝒖

• Measurement noise


• 


• 

• Process noise (dependent on sampling rate)


• 


• Trust in modeled position:


• Posstddev after 1s: 


• Trust in modeled speed:


• Speedstddev after 1s: 

Σz = [σ2
3]

σ2
3 = (20mm)2

Σu = [σ2
1 0

0 σ2
2]

102 ⋅
1

0.13
= 27.7mm

102 ⋅
1

0.13
= 27.7mm/s

Implement the Kalman Filter

x̄ = [x
·x]

Sample time ~0.13s 
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Implement the Kalman Filter
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Kalman Filter ( )

1. 


2. 


3. 


4. 


5. 


6. Return  and 

μ(t − 1), Σ(t − 1), u(t), z(t)
μp(t) = Aμ(t − 1) + Bu(t)
Σp(t) = AΣ(t − 1)AT + Σu

KKF = Σp(t)CT(CΣp(t)CT + Σz)−1

μ(t) = μp(t) + KKF(z(t) − Cμp(t))
Σ(t) = (I − KKFC)Σp(t)

μ(t) Σ(t)

Finally, determine your initial state 
mean and covariance

μ(t − 1)
Σ(t − 1)
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Lab 7: Kalman Filter
• Define A, B, and C matrices


• System ID on step response


• Sanity check


• Run virtual kalman filter on data from Lab 5 PID


• What is your initial state, and how confident are you in it?


• How much trust do you put in your model versus your sensor values?


• Experiment

• Put less trust in the model

• Put less trust in the sensor

• Start with a bad initial estimate 

• Our dynamic model is a bad estimate for the static robot
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Linear System Review
• Linear system:  


• Solution: 


• Eigenvectors: 


•
Eigenvalues: 


• Linear Transform: 


• Solution: 


• Mapping from x to z to x: 


• Stability in continuous time: , stable iff 

·x = Ax

x(t) = eAtx(0)

T = [ξ1 ξ2 . . . ξn]

D =

λ1

λ2
⋱

λn

AT = TD

eAt = eTDT−1t

x(t) = TeDtT−1x(0)

λ = a + ib a < 0

Fast Robots 2025

• Discrete time: , where 


• Stability in discrete time: , stable iff 


• Nonlinear systems: 


• Linearization: 


• Controllability: 


• Reachability


• Controllability Gramian


• Pole Placement


• Optimal Control (LQR)

x(k + 1) = Ãx(k) Ã = eAΔt

λ̃n = Rneinθ R < 1

·x = f(x)

Df
Dx x̄

·x = (A − BK)x
>>[T,D] = eig(A)

>>rank(ctrb(A,B))

>>place(A,B,poles)

>>LQR(A,B,Q,R)

• Optimal Observer (KF): sensor/model noise



What we’ve covered so far…
• Configuration space and transformations


• Data types


• Sensors


• Actuators/Motors


• Wiring/EMI


• Control


• State space models


• PID/LQR control


• Observers


• Deterministic vs. Probabilistic Robots


• Bayes Theorem

Next up….
Navigation and Planning
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Navigation and Planning

Slides adapted from Vivek Thangavelu
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Navigation
• Problem: Find the path in the workspace from an initial location to a goal location, while 

avoiding collisions


• How do you get to your goal?

• Can you see your goal?

• Do you have a map?

• Are obstacles unknown or dynamic?

• Does it matter how fast you get there?

• Does it matter how smooth the path is?

• How much compute power do you have?

• How precise and accurate is your motion control?

• What sensors do you have available?

• etc.
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Navigation
• Problem: Find the path in the workspace from an initial 

location to a goal location, while avoiding collisions


• Assumption: A good map for navigation exists


• Global navigation 
• Given a map and a goal location,  

find and execute a trajectory that  
brings the robot to the goal


• (Long term plan)


• Local navigation 
• Given real-time sensor readings,  

modulate the robot trajectory to  
avoid collisions


• (Short term plan)

Fast Robots 2025



Navigation
• Break the problem down: localization, map building, path planning
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Next module on navigation
• Local planners


• Global localization and planning


• Map representations

• Continuous

• Discrete

• Topological


• Maps as graphs

• Graph search algorithms

• Breadth first search

• Depth first search

• Dijkstras

• A*
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Local Planners
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Local path planning/ obstacle avoidance 
• Use goal position, recent sensor readings, and relative position of robot to goal


• Can be based on a local map

• Often implemented as a separate task

• Runs at a much faster rate than the global planner


• 3 examples:

• BUG algorithms

• Vector Field Histogram (VFH)

• Dynamic Window Approach (DWA)

Wagner, ITS 2015
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Bug algorithms
• Uses local knowledge and the direction and distance to the goal


• Basic idea

• Follow the contour of obstacles until you see the goal

• State 1: seek goal

• State 2: follow wall


• Different Variants: Bug0, Bug1, Bug2


• Advantages

• Super simple

• No global map

• Completeness


• Disadvantages

• Suboptimal
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Bug 0
• Sensor Assumptions


• Direction to the goal


• Detect walls


• Algorithm


• Go towards goal


• Follow obstacles until you can 
go towards goal again


• Loop

Howie Choset 16-735
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Bug 0
• Sensor Assumptions
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Bug 0
• Sensor Assumptions


• Direction to the goal


• Detect walls


• Algorithm


• Go towards goal


• Follow obstacles until you can 
go towards goal again


• Loop

Howie Choset 16-735
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Bug 1
• Sensor Assumptions


• Direction to the goal


• Detect walls


• Odometry


• Algorithm


• Go towards goal


• Follow obstacles and remember 
how close you got to the goal 

• Return to the closest point, loop

Howie Choset 16-735
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Bug 1
• Sensor Assumptions


• Direction to the goal


• Detect walls


• Odometry


• Algorithm


• Go towards goal


• Follow obstacles and remember 
how close you got to the goal 

• Return to the closest point, loop

Howie Choset 16-735
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Bug 1 - formally
• Sensor Assumptions


• Direction to the goal


• Detect walls


• Odometry


• Lower bound traversal? d


• Upper bound traversal? d + 1.5∑(Pn) 

• Pros?


• If a path exists, it returns in finite time


• It knows if none exist!
Howie Choset 16-735

d

Pn
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Bug 2
• Sensor Assumptions


• Direction to the goal


• Detect walls


• Odometry


• Original vector to the goal


• Algorithm


• Go towards goal on the vector


• Follow obstacles until you are 
back on the vector (and closer to 
the obstacle) 

• Loop Howie Choset 16-735
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Bug 2
• Sensor Assumptions


• Direction to the goal


• Detect walls


• Odometry


• Original vector to the goal


• Algorithm


• Go towards goal on the vector


• Follow obstacles until you are 
back on the vector (and closer to 
the obstacle) 

• Loop Howie Choset 16-735
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Bug 2
• Sensor Assumptions


• Direction to the goal


• Detect walls


• Odometry


• Original vector to the goal


• Algorithm


• Go towards goal on the vector


• Follow obstacles until you are 
back on the vector (and closer to 
the obstacle) 

• Loop Howie Choset 16-735

What is faster, right- or 
left- wall following?
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Battle of the bugs (1 vs 2)

https://www.youtube.com/watch?v=T2PVaKyxMmY



Battle of the bugs (1 vs 2)

https://www.youtube.com/watch?v=T2PVaKyxMmY

Exhaustive search Greedy search



Bug algorithms
• Uses local knowledge and the direction and distance to the goal


• Basic idea

• Follow the contour of obstacles until you see the goal

• State 1: seek goal

• State 2: follow wall


• Different Variants: Bug0, Bug1, Bug2


• Advantages

• Super simple

• No global map

• Completeness


• Disadvantages

• Suboptimal

• The robot motion behavior is reactive

• Issues if the instantaneous sensor 

readings do not provide enough 
information or are noisy
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Vector Field Histograms
• VFH creates a local map of the environment around the 

robot populated by “relatively” recent sensor readings


• Build a local 3D grid map reduce to a 1-DOF histogram


• Planning

• Find all openings large enough for robot to pass

• Choose the one with the lowest cost, G

• G = a*goal_direction + b*orientation +c*prev_direction

http://www.personal.umich.edu/~johannb/Papers/paper16.pdf
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Vector Field Histograms
• VFH creates a local map of the environment around the 

robot populated by “relatively” recent sensor readings


• Build a local 3D grid map reduce to a 1-DOF histogram


• Planning

• Find all openings large enough for robot to pass

• Choose the one with the lowest cost, G

• G = a*goal_direction + b*orientation +c*prev_direction

• VFH+: incorporate kinematics


• Limitations

• Does not avoid local minima

• Not guaranteed to reach goal

http://www.personal.umich.edu/~johannb/Papers/paper16.pdf
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Dynamic Window Approach
• Search in the velocity space (robot moves in circular arcs)

• Takes into account robot acceleration and update rates


• A dynamic window, Vd, is the set of all tuples (vd, ⍵d) that can be reached


• Admissable velocities, Va, include those where the robot can stop before 
collision


• The search space is then  


• Cost function:

Vr = Vs ∩ Va ∩ Vd

http://www4.cs.umanitoba.ca/~jacky/
Teaching/Courses/74.795-LocalVision/
ReadingList/fox97dynamic.pdf
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Local Planners
• Bug algorithms


• Inefficient but can be exhaustive


• Vector Field Histograms


• Takes into account probabilistic sensor measurements


• Vector Field Histograms+


• Takes into account probabilistic sensor measurements and robot kinematics


• Dynamic window approach


• Takes into account robot dynamics
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Global localization
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Next module on navigation
• Local planners


• Global localization and planning


• Map representations

• Continuous

• Discrete

• Topological


• Maps as graphs

• Graph search algorithms

• Breadth first search

• Depth first search

• Dijkstras

• A*
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Navigation
• Break the problem down: localization, map building, path planning
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Localization Problem
Position Tracking Global Localization

• Initial robot pose is known 

• Either deterministically (odometry) or 
through Bayesian statistic (motion and 
sensor models)


• It is a “local” problem, as the uncertainty is 
local (often small) and confined to a region 
near the robot’s true pose

• Initial robot pose is unknown 

• Need to estimate position from scratch


• A more difficult “global” problem, 
where you cannot assume boundedness in 
pose error

kidnapped robot problem
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Next module on navigation
• Local planners


• Global localization and planning


• Map representations

• Continuous

• Discrete

• Topological


• Maps as graphs

• Graph search algorithms

• Breadth first search

• Depth first search

• Dijkstras

• A*

Fast Robots 2025



Navigation
• Break the problem down: localization, map building, path planning
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