
E. Farrell Helbling, 3/17/25

Graph Search
Fast Robots, ECE4160/5160, MAE 4190/5190

Fast Robots 2025

Class Action Items

• Lab 7: Kalman Filtering

• The first three tasks were discussed in class last week, please review slides before
you attend your lab section.

• Getting the KF working in simulation is pretty easy, getting it to work on the robot
is challenging. Do not leave this to the night before!

• Lab 8: Stunts, we will have test tracks set up this weekend for those that want to
start this lab early. The lab is posted, you have two options, the flip or the drift.
Please try to get this done next week before spring break (or do it after spring break).
I don’t recommend taking the robot on a plane!

• Lab 3 regrade requests will close on Thursday midnight. Submit requests in canvas.

• Lab 4 regrade requests will close next Tuesday midnight.

Fast Robots 2025

Navigation
• Break the problem down: localization, map building, path planning

Information 
extraction

Raw sensor 
dataPE

R
C

EP
TI

O
N

Path planning

Path

PLAN
N

IN
G

WORLD

Global map and state

ActionSensing Path execution

Actuator 
commands

M
O

TIO
N
 

C
O

N
TR

O
L

Localization

Environmental 
modelES

TI
M

AT
IO

N
Fast Robots 2025

Navigation
• Local planners

• Global localization and planning

• Map representations

• Continuous

• Discrete

• Topological

• Maps as graphs

• Graph search algorithms

• Breadth first search

• Depth first search

• Dijkstras

• A*

Fast Robots 2025
Slides adapted from Vivek Thangavelu

Modeling path planning as a graph search problem
Fast Robots 2025

Real World Graph
Construction Graph SearchConfiguration

Space
Map

Representation

Common alternatives

• Optimal control

• Potential fields

Modeling path planning as a graph search problem
Fast Robots 2025

Map
Representation

Configuration
SpaceReal World Graph

Construction Graph Search

• Geometry-based graphs

• Topological Graphs

• Cell decomposition

• Visibility Graphs

• Sampling-based graphs

• RRT

• PRM

Sampling-based planners
Fast Robots 2025

• Rather than computing the C-Space explicitly, we sample it

• Often efficient in high dimensional spaces

• Compute if a robot configuration has collisions

• Just requires forward kinematics

• (Local path plans between configurations)

• Examples

• Probabilistic Roadmaps (PRM)

• Rapidly Exploring Random Trees (RRT)

Probabilistic Roadmaps
• Configurations are sampled by picking coordinates at random

Fast Robots 2025

Probabilistic Roadmaps
• Configurations are sampled by picking coordinates at random

• Sampled configurations are tested for collision

Fast Robots 2025

Probabilistic Roadmaps
• Configurations are sampled by picking coordinates at random

• Sampled configurations are tested for collision

• Each configuration is linked by straight paths to its nearest neighbors

Fast Robots 2025

Probabilistic Roadmaps
• Configurations are sampled by picking coordinates at random

• Sampled configurations are tested for collision

• Each configuration is linked by straight paths to its nearest neighbors

• The collision-free links are retained as local paths to form the PRM

Fast Robots 2025

start

goal

Probabilistic Roadmaps
• Configurations are sampled by picking coordinates at random

• Sampled configurations are tested for collision

• Each configuration is linked by straight paths to its nearest neighbors

• The collision-free links are retained as local paths to form the PRM

• The start and goal configurations are included as milestones

Fast Robots 2025

start

goal

Probabilistic Roadmaps
• Configurations are sampled by picking coordinates at random

• Sampled configurations are tested for collision

• Each configuration is linked by straight paths to its nearest neighbors

• The collision-free links are retained as local paths to form the PRM

• The start and goal configurations are included as milestones

• The PRM is searched for a path from start to goal

Fast Robots 2025

Probabilistic Roadmaps
Constructing the graph

• Initially empty Graph

• A configuration is randomly chosen

• If then add to

• Repeat until vertices chosen

• For each , select closest neighbors

• Local planner, , connects to neighbor

• If connection is collision free, add edge

G

q

q ∈ Qfree G

N

q k

Δ q q′￼

(q, q′￼)

Fast Robots 2025

Probabilistic Roadmaps
Finding the Path

• Connect and to the roadmap

• Find closest neighbors of and
 in roadmap, plan local path

• Compute cost of path

• Repeat until graphs are connected

• Choose cheapest path

qinit qgoal

k qinit
qgoal Δ

Fast Robots 2025

Probabilistic Roadmaps
Finding the Path

Fast Robots 2025

Probabilistic Roadmaps
Considerations

• Single query/ multi query

• How are nodes placed?

• Uniform sampling strategies

• Non-uniform sampling strategies

• How are local neighbors found?

• How is collision detection performed?

• Dominates time consumption in
PRMs

Fast Robots 2025

Probabilistic Roadmaps
Robot Motion Planning on a Chip, Murray et al. RSS 2016
• PRM on an FPGA

• Collision detection circuits on each edge in logic gates
for massive parallel operation

• 6DOF planning in <1ms

Fast Robots 2025

Rapidly Exploring Random Trees (RRT)

1. Maintain a tree rooted at the starting point

2. Choose a point at random from free space

3. Find the closest configuration already in the tree

4. Extend the tree in the direction of the new configuration

Rapidly Exploring Random Trees (RRT)
1.Algorithm BuildRRT
2. Input: Initial configuration qinit, number of vertices K,
incremental distance Δq)

3. Output: RRT graph G
4. G.init(qinit)
5. for k = 1 to K
6. qrand ← RAND_CONF()
7. qnear ← NEAREST_VERTEX(qrand, G)
8. qnew ← NEW_CONF(qnear, qrand, Δq)
9. G.add_vertex(qnew)
10. G.add_edge(qnear, qnew)
11. return G

Rapidly Exploring Random Trees (RRT)
Uniform/ biased sampling

Aaron Becker, UH, Wolfram Player Example

Rapidly Exploring Random Trees (RRT)
Considerations
• Sensitive to step-size (∆q)

• Small: many nodes, closely spaced, slowing down nearest neighbor computation

• Large: Increased risk of suboptimal plans / not finding a solution

• How are samples chosen?

• Uniform sampling may need too many samples to find the goal

• Biased sampling towards goal can ease this problem

• How are closest neighbors found?

• How are local paths generated?

• Variations

• RRT Connect, A*-RRT, Informed RRT*, Real-Time RRT*, Theta*-RRT, etc.

Graph Search

Fast Robots 2025

Modeling path planning as a graph search problem
Fast Robots 2025

Map
Representation

Configuration
SpaceReal World Graph

Construction

• Breadth First

• Depth First

• Dijkstra’s

• A*

Graph Search

https://atsushisakai.github.io/PythonRobotics/
modules/5_path_planning/rrt/rrt.html

Graph Search
• What is the simplest thing to do?

• Random or brute force search

• Other methods?

• Uninformed search

• Depth First Search (DFS)

• Breadth First Search (BFS)

• Dijkstra’s Search (LCFS)

• Informed Search

• Greedy

• A*

• (and many more)

Fast Robots 2025

Comparing Search Algorithms
• Vocabulary: node, edge, parents/children, branching factor, depth

• Definitions

• Complete

• Guaranteed to find a solution in finite time

• Time complexity

• Worst-case run time

• Space complexity

• Worst-case memory

• Optimality

• A search is optimal if it is complete, and only returns cost-minimizing

solutions

Fast Robots 2025

17

Algorithms and Search
• What is the simplest thing to do?

• Random or brute force search

• How many grid traversals will brute
force take?

• First establish a search order:  
N, E, S, W

Fast Robots 2025

S

1

2

3

4 5 6 7

8

9

10

111213

14

15

16

13

Algorithms and Search
• What is the simplest thing to do?

• Random or brute force search

• How many grid traversals will brute
force take?

• First establish a search order:  
N, E, S, W

• Advance x first, then increment y
and decrease x, etc.

Fast Robots 2025

S 1 2 3

4567

8 9 10 11

12

x

y

Algorithms and Search
• What is the simplest thing to do?

• Random or brute force search

• Other methods?

• Depth First Search (DFS)

Fast Robots 2025

S

1

2

3

4 5 6

x

y

Search Order: N, E, S, W

Algorithms and Search
• What is the simplest thing to do?

• Random or brute force search

• Other methods?

• Depth First Search (DFS)

• Breadth First Search (BFS)

Fast Robots 2025

S

1

2

3

4

5

6

7

8

9

10

11

12

x

y

13

Search Order: N, E, S, W

Depth First Search
Fast Robots 2025

(0,0)

(0,1) (1,0)

(0,2) (1,1)

(0,3) (1,2)

(0,4) (1,3)

and so on…

(1,4)

and so on…
S

1

2

3

4 5

x

y

Search Order: N, E, S, W

Depth First Search (DFS)
Fast Robots 2025

S

1

2

3

4

x

y

Search Order: N, E, S, W
(0,0)

(0,1) (1,0)

(0,2) (1,1)

(0,3) (1,2)

(0,4) (1,3)

and so on…

(1,4)

and so on…

Depth First Search
Fast Robots 2025

(0,0)

(0,1) (1,0)

(0,2) (1,1)

(0,3)

(0,4)

and so on…

and so on…
S

1

2

3

4

5

x

y

X

Search Order: N, E, S, W

(1,2) (2,1)

Why am I not also adding (1,0)?
It’s already on the frontier

Breadth First Search
Fast Robots 2025

(0,0)

(0,1) (1,0)

(0,2) (1,1)

and so on…

and so on…

S

1

2

x

y

Search Order: N, E, S, W

(0,3) (3,1)

(2,0) 6

73

4

5

Search Algorithms, General

• For every node, n

• There is a set of actions, a

• That moves you to a new node, n’

Fast Robots 2025

S

x
y

n’1

n’2

n’3 n a1

a2

a3

Search Algorithms, General
Fast Robots 2025

S

x
y

How much space do we allocate to the buffers?

n = state(init)

frontier.append(n)

while(frontier not empty)

n = pull state from frontier

append n to visited

if n = goal, return solution

for all actions in n

n’ = a(n)

if n’ not visited

append n’ to frontier

frontier visited

Depth First Search (DFS)
Fast Robots 2025

S

x
y

n = state(init)

frontier.append(n)

while(frontier not empty)

n = pull state from frontier

append n to visited

if n = goal, return solution

for all actions in n

n’ = a(n)

if n’ not visited

append n’ to frontier

0,0

…

X*Y

frontier visited

Depth First Search (DFS)
Fast Robots 2025

S

x
y

n = state(init)

frontier.append(n)

while(frontier not empty)

n = pull state from frontier

append n to visited

if n = goal, return solution

for all actions in n

n’ = a(n)

if n’ not visited

append n’ to frontier

0,1

1,0

0,0

…

X*Y

frontier visited

Depth First Search (DFS)
Fast Robots 2025

S

x
y

n = state(init)

frontier.append(n)

while(frontier not empty)

n = pull state from frontier

append n to visited

if n = goal, return solution

for all actions in n

n’ = a(n)

if n’ not visited

append n’ to frontier

1,0

0,0

0,1

…

X*Y

frontier visited

Depth First Search (DFS)
Fast Robots 2025

S

x
y

n = state(init)

frontier.append(n)

while(frontier not empty)

n = pull state from frontier

append n to visited

if n = goal, return solution

for all actions in n

n’ = a(n)

if n’ not visited

append n’ to frontier

0,2

1,1

1,0

0,0

0,1

…

X*Y

frontier visited

Depth First Search (DFS)
Fast Robots 2025

S

x
y

n = state(init)

frontier.append(n)

while(frontier not empty)

n = pull state from frontier

append n to visited

if n = goal, return solution

for all actions in n

n’ = a(n)

if n’ not visited

append n’ to frontier

0,3

1,2

1,1

1,0

0,0

0,1

0,2

…

X*Y

frontier visited

Depth First Search (DFS)
Fast Robots 2025

S

x
y

n = state(init)

frontier.append(n)

while(frontier not empty)

n = pull state from frontier

append n to visited

if n = goal, return solution

for all actions in n

n’ = a(n)

if n’ not visited

append n’ to frontier

0,4

1,3

1,2

1,1

1,0

0,0

0,1

0,2

0,3

…

X*Y

frontier visited

What is the frontier buffer?

Last-In First-Out (LIFO)

Depth First Search (DFS)
• Is it complete?

• Yes, but only on finite graphs

• What is the time complexity?

• O(bm)

• What is the space complexity?

• O(bm)

Fast Robots 2025

S

x
y

0,4

1,3

1,2

1,1

1,0

0,0

0,1

0,2

0,3

…

X*Y

frontier visited

(0,0)
(0,1) (1,0)

(0,2) (1,1)

(0,3) (1,2)

(0,4) (1,3)

and so on…

(1,4)

and so on…

Memory grows linearly
with the depth of the
graph

Breadth First Search (BFS)
Fast Robots 2025

S

x
y

n = state(init)

frontier.append(n)

while(frontier not empty)

n = pull state from frontier

if n = goal, return solution

for all actions in n

n’ = a(n)

if n’ not visited

append n’ to frontier

0,0

0,1

1,0

0,2

…

frontier visited

0,0

0,1

1,0

0,2

1,1

2,0

0,3

Breadth First Search (BFS)
• Is it complete?

• Yes, as long as b is finite

• Is it optimal?

• Yes

• What is the time complexity?

• O(bm)

• What is the space complexity?

• O(bm)

Fast Robots 2025

S

x
y

1,1

2,0

0,3

0,0

0,1

1,0

0,2

…

frontier visited

(0,0)
(0,1) (1,0)

(0,2) (1,1)

(0,3)

(2,0)

(3,1) Memory grows
exponentially with the
depth of the graph

BFS: Memory and Computation
Fast Robots 2025

0 2 4 6 8 10
depth

0

2000

4000

6000

8000

10000

no
de

s
ex

pl
or

ed

BFS: Growth of frontier

etc…

Frontier size:

• 4

• 12

• 36

R

Uninformed Search Algorithms
• When is DFS appropriate?

• If the memory is restricted

• If solutions tend to occur at the same depth in the tree

• When is DFS inappropriate?

• If some paths have infinite length / if the graph contains cycles

• If some solutions are very deep, while others are very shallow

• When is BFS appropriate?

• If you need to find the shortest path

• If memory is not a problem

• If some solutions are shallow

• If there might be infinite paths

• When is BFS inappropriate?

• If memory is limited / if the branching factor is very large

• If solutions tend to be located deep in the tree

Fast Robots 2025

Applications in Fast Robots
Is BFS/DFS possible on the Artemis?

• What is the maximum branching factor?

• b = 4

• What is the longest path?

• m ∼ 20*20 = 400

• Depth First Search

• Frontier: O(bm) = 1,600 nodes

• Float -> 6.4kB

• Artemis memory?

• 1MB flash and 384k RAM

• Breadth First Search

• Frontier: O(bm) = 420*20 = 6.7e240 nodes

Fast Robots 2025

BFS: Memory and Computation
Fast Robots 2025

0 2 4 6 8 10
depth

0

2000

4000

6000

8000

10000

no
de

s
ex

pl
or

ed

BFS: Growth of frontier

etc…

Frontier size:

• 4

• 12

• 36

1 2 3 4 5 6 7
depth

0

100

200

300

400

500

no
de

s
ex

pl
or

ed

BFS: Growth of frontier

Don’t revisit nodes!

R

Lowest-Cost First Search (LCFS)
Consider parent cost!

Fast Robots 2025

(1,4) (2,4) (3,4)

(1,3) R (3,3)

(1,2) (2,2) (3,2)

G (2,1) (3,1)

(2,0)

What cost heuristic could we add?

• Go straight, cost 1

• Turn one quadrant, cost 1

(2,3)

(0,2) (1,1)

(3,2)(3,4)
(1,2)

(2,4)
(3,3) (2,2)

(1,3)

(1,4)
(2,1)

(2,1) • n.state

• n.parent

• n.cost

• n.action

What node to expand next?

Data structure

Lowest-Cost First Search (LCFS)
Consider parent cost!

Fast Robots 2025

(1,4) (2,4) (3,4)

(1,3) R (3,3)

(1,2) (2,2) (3,2)

G (2,1) (3,1)

(2,0)

n = state(init)

frontier.append(n)

while(frontier not empty)

n = pull state from frontier

visited.append(n)

if n = goal, return solution

for all actions in n

n’ = a(n)

if n’ not visited

priority = heuristic(goal,n’)

frontier.append(priority)

What cost heuristic could we add?

• Go straight, cost 1

• Turn one quadrant, cost 1

Lowest-Cost First Search (LCFS)

• Is it complete?

• Yes, as long as path costs are positive

• What is the time complexity?

• O(bm)

• What is the space complexity?

• O(bm)

Fast Robots 2025

https://www.youtube.com/watch?v=t7UjtzqIXSA

https://www.youtube.com/watch?v=t7UjtzqIXSA

Could we be smarter?

• Sure, you know the graph and you know the goal!

• Informed search

• Consider the parent cost, and…

• Estimate the shortest path to the “goal”

• Assign a value to the frontier

• Pick a frontier closest to the goal (minimize distance)

Fast Robots 2025

Informed Search
Greedy Search

Fast Robots 2025

(0,0)
(0,1) (1,0)

(0,2) (1,1)

and so on…
S

1

2

x

y

Search Order: N, E, S, W

(0,3) (1,2)
7

3 4

(0,4) (1,3)

(1,4) (2,3)

Define a heuristic to target:

• Manhattan Distance

• abs(xs-xg)+abs(ys-yg)

Informed Search
Greedy Search

Fast Robots 2025

S

1

2

x

y

Search Order: N, E, S, W

7

3 4

n = state(init)
frontier.append(n)
while(frontier not empty)
	 n = pull state from frontier
	 visited.append(n)
	 if n = goal, return solution
	 for all actions in n
	 n’ = a(n)
	 if n’ not visited
	 	 priority = heuristic(goal,n’)
	 	 	 frontier.append(priority)

Informed Search
Greedy Search

Fast Robots 2025

S

1

2

x

y

Search Order: N, E, S, W

6

3

4

• Is it complete?

• No

• What is the time complexity?

• O(bm)

• What is the space complexity?

• O(bm)

• Optimal?

• No…

5

7 8 9

Search Algorithms, general
Fast Robots 2025

• Breadth First Search

• Complete and optimal

• …but searches everything

• Lowest-Cost First Algorithm

• Complete and optimal

• … but it wastes time exploring in directions that aren’t promising

• Greedy Search

• Complete (in most cases)

• … only explores promising directions

Considers parent cost

Considers goal

Can we do better? A*

Informed Search
A* (A-star)

Fast Robots 2025

S

x

y

Search Order: N, E, S, W

n = state(init)
frontier.append(n)
while(frontier not empty)
	 n = pull state from frontier
	 if n = goal, return solution
	 for all actions in n
	 n’ = a(n)
	 if ((n’ not visited or
	 (visited and n’.cost < n_old.cost))
	 	 priority = heuristic(goal,n’)+cost
	 	 	 frontier.append(priority)
	 	 	 visited.append(n’)

Informed Search
A* (A-star)

Fast Robots 2025

(0,0)
(0,1) (1,0)

(0,2) (1,1)

and so on…
S

1

2

x

y

Search Order: N, E, S, W

(0,3) (1,2)
73

4
(0,4) (1,3)

(1,4) (2,3)

6

5

10

8

9

11

(1,2)

(1,4) (2,3)

(1,4) (2,3)

A* Search
• What if the heuristic is too optimistic?

• Estimated cost < true cost

• What if the heuristic is too pessimistic?

• Estimated cost > true cost

• No longer guaranteed to be optimal

• What if the heuristic is just right?

• Pre-compute the cost between all nodes

• Feasible for you?

Fast Robots 2025

Admissible heuristic

Inadmissible heuristic

Informed Search
A* (A-star)

Fast Robots 2025

• Is it complete?

• Yes!

• What is the time complexity?

• O(bm)

• What is the space complexity?

• O(bm)

• Optimal?

• Yes, if the heuristic is admissible!

S

1

2

x

y

Search Order: N, E, S, W

73

4

6

5

10

8

9

11

Summary

S

1

2

A*

73

4

6

5

10

8

9

11

S

1

2

Greedy

7

3

4

6

5

8

S

1

3

LCFS

82

5

4

6

7

11

10

13

12 15

9

14

minimum path minimum path & efficient

