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Class Action ltems

e Lab 7: Kalman Filtering

» The first three tasks were discussed in class last week, please review slides before
you attend your lab section.

» Getting the KF working in simulation is pretty easy, getting it to work on the robot
is challenging. Do not leave this to the night before!

« Lab 8: Stunts, we will have test tracks set up this weekend for those that want to
start this lab early. The lab is posted, you have two options, the flip or the drift.
Please try to get this done next week before spring break (or do it after spring break).
| don’t recommend taking the robot on a plane!

* Lab 3 regrade requests will close on Thursday midnight. Submit requests in canvas.

» Lab 4 regrade requests will close next Tuesday midnight.
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Navigation

* Break the problem down: localization, map building, path planning
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Slides adapted from Vivek Thangavelu

Navigation

* Local planners
» Global localization and planning

 Map representations
« Continuous
* Discrete
» Topological

 Maps as graphs
« Graph search algorithms
* Breadth first search
* Depth first search
e Dijkstras
o« A*
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Modeling path planning as a graph search prob
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Modeling path planning as a graph search problem
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Graph Search

Geometry-based graphs

* Topological Graphs

e Cell decomposition

 Visibility Graphs

Sampling-based graphs

* RRT
« PRM




Sampling-based planners

« Rather than computing the C-Space explicitly, we sample it
« Often efficient in high dimensional spaces
« Compute if a robot configuration has collisions
« Just requires forward kinematics
* (Local path plans between configurations)
 Examples
* Probabilistic Roadmaps (PRM)

« Rapidly Exploring Random Trees (RRT)
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Probabilistic Roadmaps

« Configurations are sampled by picking coordinates at random
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Probabilistic Roadmaps

« Configurations are sampled by picking coordinates at random
« Sampled configurations are tested for collision
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Probabilistic Roadmaps

« Configurations are sampled by picking coordinates at random
« Sampled configurations are tested for collision
« Each configuration is linked by straight paths to its nearest neighbors
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Probabilistic Roadmaps

« Configurations are sampled by picking coordinates at random

« Sampled configurations are tested for collision

« Each configuration is linked by straight paths to its nearest neighbors
* The collision-free links are retained as local paths to form the PRM
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Probabilistic Roadmaps

« Configurations are sampled by picking coordinates at random
Sampled configurations are tested for collision

Each configuration is linked by straight paths to its nearest neighbors
The collision-free links are retained as local paths to form the PRM
The start and goal configurations are included as milestones
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Probabilistic Roadmaps

« Configurations are sampled by picking coordinates at random
Sampled configurations are tested for collision

Each configuration is linked by straight paths to its nearest neighbors
The collision-free links are retained as local paths to form the PRM
The start and goal configurations are included as milestones

The PRM is searched for a path from start to goal




Probabilistic Roadmaps
Constructing the graph

e Initially empty Graph G
A configuration g is randomly chosen

- Ifg € Qg thenadd to G

* Repeat until N vertices chosen

« For each g, select k closest neighbors

/

 Local planner, A, connects g to neighbor ¢

 If connection is collision free, add edge
(4,9
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Algorithm 6 Roadmap Construction Algorithm
Input:
n : number of nodes to put in the roadmap

k : number of closest neighbors to examine for each configuration
Output:

A roadmap G = (V, E)
V<9
E <0
while |V| < n do

repeat

q < arandom configuration in Q

until ¢ is collision-free
V < VU{q}
end while
forallg € V do
N, < the k closest neighbors of ¢ chosen from V according to dist
forallg’ € N, do
if (¢,q9') € E and A(q, g¢') # NIL then
E < EU{(q,9)}
end if
end for
end for




Probabilistic Roadmaps

Finding the Path

Connect g;,;, and ¢, to the roadmap

Find k closest neighbors of ¢;, ;. and

9o0al in roadmap, plan local path A

Compute cost of path
Repeat until graphs are connected

Choose cheapest path

o

10:
: until a connection was succesful or the set N,

Fast Robots 2025

= B L I R

Algorithm 7 Solve Query Algorithm
Input:

Ginit: the initial configuration

Ggoar: the goal configuration

k: the number of closest neighbors to examine for each configuration
G = (V, E): the roadmap computed by algorithm 6

Output:
A path from giuit 1O ggou OF failure

: N, . < the k closest neighbors of gj,; from V according to dist

Qinit
N,... < the k closest neighbors of ggoa from V' according to dist
Ve = [‘IIDI(] U {‘Ignul’ uv
set g’ to be the closest neighbor of gjni in Ny, ,

: repeat

if A(Ginit, ¢") 5 NIL then

E < (Gm.q)VE
else

set g' to be the next closest neighbor of g, in N,
end if
. 1s empty
set g’ to be the closest neighbor of guo in N,
repeat

if A(Ggou» ¢') # NIL then

E < (qgoas )V E

else
set ¢" to be the next closest neighbor of gg.a in Ny,
end if

: until a connection was succesful or the set N, is empty
. P < shortest P‘"h(qmu- (Ig\ul- G)
. if P is not empty then

return P

23: else

return failure

25: end if
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Probabilistic Roadmaps
Finding the Path

Figure 7.4 An example of how to solve a query with the roadmap from figure 7.3. The
configurations ginir and ggoq are first connected to the roadmap through ¢’ and g”. Then a
graph-search algorithm returns the shortest path denoted by the thick black lines.
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Probabilistic Roadmaps

Considerations

Single query/ multi query

How are nodes placed?
e Uniform sampling strategies

* Non-uniform sampling strategies

How are local neighbors found?

How is collision detection performed?

Figure 7.4 An example of how to solve a query with the roadmap from figure 7.3. The
configurations @iy and ggq are first connected to the roadmap through ¢’ and ¢”. Then a

° Dom | nates tlm e Consu m ptlon | n graph-search algorithm returns the shortest path denoted by the thick black lines.
PRMs
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Probabilistic Roadmaps
Robot Motion Planning on a Chip, Murray et al. RSS 2016
« PRM on an FPGA

« Collision detection circuits on each edge in logic gates
for massive parallel operation

robotics
e 6DOF planning in <1ms

Y
O
(a&!b&c&d&!e) || a
ey = (la&b&!c&d&le)|| EE i[:
{ ] (a&b&!c&d&e) || P
a € oo
a C d - f

Fig. 3: Our process for producing robot-specific motion planning circuitry. Given a robot description (a), we construct a PRM
(b), most likely subsampled for coverage from a much larger PRM. We discretize the robot’s reachable space into depth pixels
and, for each edge 7 on the PRM, precompute all the depth pixels that collide with the corresponding swept volume (c). We
use these values to construct a logical expression that, given the coordinates of a depth pixel encoded in binary, returns t rue
if that depth pixel collides with edge 7 (d); this logical expression is optimized and used to build a collision detection circuit
(CDC) (e). For each edge in the PRM there is one such circuit. When the robot wishes to construct a motion plan, it perceives
its environment, determines which depth pixels correspond to obstacles, and transmits their binary representations to every
CDC (f). All CDCs perform collision detection simultaneously, in parallel for each depth pixel, storing a bit which indicates



Rapidly Exploring Random Trees (RRT)

- - -

1. Maintain a tree rooted at the starting point O
Choose a point at random from free space O

Find the closest configuration already in the tree

> W D

Extend the tree in the direction of the new configuration /



Rapidly Exploring Random Trees (RRT)

1.Algorithm BuildRRT
2. Input: Initial configuration Ji,i+, number of vertices K,
incremental distance AQ)
Output: RRT graph G
G.ini1t (ginit)
for k = 1 to K
grand — RAND CONF ()
qnear — NEAREST VERTEX (grand, G)
gnew « NEW CONEF (gnear, grand, AqQ)
G.add vertex (gnew)

R PR OWOo-Joy Ul W

0. G.add edge (gnear, gnew)
1. return G




Rapidly Exploring Random Trees (RRT)

Uniform/ biased sampling

Aaron Becker, UH, Wolfram Player Example



Rapidly Exploring Random Trees (RRT)
Considerations

« Sensitive to step-size (AQ)
« Small: many nodes, closely spaced, slowing down nearest neighbor computation

« Large: Increased risk of suboptimal plans / not finding a solution

How are samples chosen?
« Uniform sampling may need too many samples to find the goal
e Biased sampling towards goal can ease this problem

How are closest neighbors found?

How are local paths generated?

Variations
 RRT Connect, A*-RRT, Informed RRT*, Real-Time RRT*, Theta*-RRT, etc.
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Graph Search



Configuration q Map > Graph
Space Representation Construction

Graph Search

\ 4

Real World >

* Breadth First
* Depth First

e Dijkstra’s

o A*

https://atsushisakai.github.io/PythonRobotics/
modules/5_path_planning/rrt/rrt.html
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Graph Search

 What is the simplest thing to do?
* Random or brute force search

e Other methods?

« Uninformed search
* Depth First Search (DFS)
* Breadth First Search (BFS)
* Dijkstra’s Search (LCFS)

* Informed Search
* Greedy
o« A*

e (and many more)




Comparing Search Algorithms

« Vocabulary: node, edge, parents/children, branching factor, depth

» Definitions

Complete
 (Guaranteed to find a solution in finite time
Time complexity

* Worst-case run time e G 0 @

Space complexity

« Worst-case memory “ o 0 @ @ Q

Optimality

« A search is optimal if it is complete, and only returns cost-minimizing
solutions



Algorithms and Search

 What is the simplest thing to do?
* Random or brute force search

« How many grid traversals will brute
force take?

* First establish a search order:
N, E,S, W

3 6 7
16 77 8
15 9
14 10
13 | 12 11




Algorithms and Search

 What is the simplest thing to do?

» Random or brute force search

« How many grid traversals will brute

force take? T
* First establish a search order:

N,E, S, W 8 9 10 | 11
* Advance x first, then increment y N

and decrease X, etc. 7 6 5 4




Algorithms and Search

 What is the simplest thing to do?

« Random or brute force search 4 5 6
e Other methods?

« Depth First Search (DFS) ]

2

A
1
S
y




Algorithms and Search

 What is the simplest thing to do?

 Random or brute force search
e Other methods?

* Depth First Search (DFS)

* Breadth First Search (BFS)




Depth First Search

and so on...

Fast Robots 2025

Search Order: N, E, S, W

4 | 5

3
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Depth First Search (DFS)

Search Order: N, E, S, W

4

3

and so on... y




Depth First Search

Search Order: N, E, S, W

(0,0)
(1,0) 4
3

(2,1)
2

(0,4)
Why am | not also adding (1,0)? 4
It’s already on the frontier 1 3]
and so on...
S
y
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Breadth First Search

Search Order: N, E, S, W

and so on...




Search Algorithms, General

 For every node, n

 There is a set of actions, a A

e That moves you to a new node, n’

nNg «— n — n’y
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Search Algorithms, General

frontier wvisited

n = state(init)

frontier.append (n)

while (frontier not empty)

n = pull state from frontier

append n to visited

if n = goal, return solution y S

for all actions in n >

n’ = a(n)

if n’ not wvisited

append n’ to frontier

How much space do we allocate to the buffers?



Depth First Search (DFS)

n = state(init)
frontier.append (n)
while (frontier not empty)
n = pull state from frontier
append n to visited
1if n = goal, return solution
for all actions in n
n’ = a(n)
if n’ not visited

append n’ to frontier

frontier wvisited

0,0

Fast Robots 2025

XY
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Depth First Search (DFS)

frontier wvisited

n = state(init) 0,1 0,0

frontier.append (n)

while (frontier not empty) 1,0

n = pull state from frontier

append n to visited

if n = goal, return solution y S

for all actions in n >

n’ = a(n)

if n’ not wvisited

append n’ to frontier XY
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Depth First Search (DFS)

frontier wvisited

n = state(init) 0,0

frontier.append (n)

while (frontier not empty) 1,0 0,1

n = pull state from frontier

append n to visited

if n = goal, return solution y S

for all actions in n >

n’ = a(n)

if n’ not wvisited

append n’ to frontier XY
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Depth First Search (DFS)

frontier wvisited

n = state(init) 0,2 0,0

frontier.append (n)

while (frontier not empty) 1,1 0,1

n = pull state from frontier
1,0

append n to visited

if n = goal, return solution y S

for all actions in n >

n’ = a(n)

if n’ not wvisited

append n’ to frontier XY
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Depth First Search (DFS)

frontier wvisited

n = state(init) 0,3 0,0
frontier.append (n)
while (frontier not empty) 1,2 0,1 t
n = pull state from frontier
append n to visited 1.1 0.2
if n = goal, return solution 1.0 y S
for all actions in n ” >

n’ = a(n)

if n’ not wvisited

append n’ to frontier XY




Depth First Search (DFS)

n = state(init)
frontier.append (n)
while (frontier not empty)
n = pull state from frontier
append n to visited
1if n = goal, return solution
for all actions in n
n’ = a(n)
if n’ not visited

append n’ to frontier

frontier wvisited

0,4

1,3

0,0

1,2

0,1

1,1

0,2

1,0

0,3

XY

Fast Robots 2025

What is the frontier buffer?

Last-In First-Out (LIFO)



Depth First Search (DFS)

 Is it complete?
* Yes, but only on finite graphs

frontier wvisited

« What is the time complexity? 0.4 0,0
) O(bm) 1,3 0,1 %
* What is the space complexity? | ’
. Q(bm) | 1,2 0,2
1,1 0,3 y S
>
X
1,0

XY

Memory grows linearly
with the depth of the
and so on... graph
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Breadth First Search (BFS)

frontier wvisited
n = state(init) 0.0
frontier.append (n) 0.1 A
while (frontier not empty)
n = pull state from frontier 1,0
1if n = goal, return solution S
for all actions in n 0,2 y >
n’ = a(n) X
if n’ not visited 11
append n’ to frontier 2.0

0,3




Breadth First Search (BFS)

e Is it complete?

* Yes, as long as b is finite

e Is it optimal?
* Yes

1,1

frontier wvisited

Fast Robots 2025

« What is the time complexity? 2,0

o O(bm)

 What is the space complexity?

o O(bm)

0,0

0,3

0,1

depth of the graph

1,0

0,2




BFS: Memory and Computation

il
Frontier size: I.
. 4 IN
. 12 $0060060060065 Fo0 |
e 36 etc... I.
BFS: Growth of frontier I.
10000 : : ! : I.
8000 I.
8
% 6000
)
%]
2 4000
2
2000 r
0 ‘
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depth
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Uninformed Search Algorithms

 When is DFS appropriate?
* If the memory is restricted
 If solutions tend to occur at the same depth in the tree
* When is DFS inappropriate?
 |f some paths have infinite length / if the graph contains cycles
 If some solutions are very deep, while others are very shallow
 When is BFS appropriate?
If you need to find the shortest path
If memory is not a problem
If some solutions are shallow
If there might be infinite paths
 When is BFS inappropriate?
* If memory is limited / if the branching factor is very large
 If solutions tend to be located deep in the tree
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Applications In Fast Robots
Is BFS/DFS possible on the Artemis?

What is the maximum branching factor?

*b=4 Bel(X, = (0,0,0)) e \‘\ = = \*

What is the longest path? — ————

* m ~ 20*20 = 400 - —

Depth First Search

* Frontier: O(bm) = 1,600 nodes

* Float -> 6.4kB

e Artemis memory? P =
» 1MB flash and 384k RAM =

Breadth First Search -

* Frontier: O(bm) = 420*20 = 6.7€240 nodes




Frontier size:
e 4

¢ 12 E006006006b0600600
e 36 etc...

BFS: Growth of frontier BFS: Growth of frontier
10000 T T " " 500 i ; T "
8000 f 1 400 ) -
Don’t revisit nodes!
ie] he)
o oL
O 6000 r O 300 1
o o
X X
[0 (0]
[2] 1)
L 4000 2200 |
o o
c c
2000 ] 100 |
0 0
0 2 4 6 8 10 1 2 3 4 5 6 7
depth depth




Lowest-Cost First Search (LCFS)

Consider parent cost!

(2,3)

0,2)

(2,1)

What node to expand next?

(1,1)

What cost heuristic could we add?

Fast Robots 2025

» Go straight, cost 1

1,3
1.9 e Turn one quadrant, cost 1 1.4 1 @4 1 84
(1,3) | _R, | B3
1,2 2|2 3,2
Data structure 12| @2 | 82
* n.state
G @1) | (3,1)
* n.parent
* n.cost 2,0)

* n.action




Lowest-Cost First Search (LCFS)

Consider parent cost!

n = state(init)

frontier.append (n)

while (frontier not empty)
n = pull state from frontier

visited.append (n)

1if n = goal, return solution

for all actions in n

n’ = a(n)
if n’ not visited
priority = heuristic(goal,n’)

frontier.append (priority)

What cost heuristic could we add?

Fast Robots 2025

» Go straight, cost 1

e Turn one quadrant, cost 1

(1,4) 2,4) (3,4)

(13 | _R, | @3

(1,2) 212) 3,2)

G 1) 3,1)
2.0




Lowest-Cost First Search (LCFS)

* |Is it complete?
* Yes, as long as path costs are positive

 What is the time complexity?
° O(bm)

 What is the space complexity?
° O(bm)

https://www.youtube.com/watch?v=t7UjtzglXSA



https://www.youtube.com/watch?v=t7UjtzqIXSA

Could we be smarter?

« Sure, you know the graph and you know the goal!
* Informed search

« Consider the parent cost, and...

» Estimate the shortest path to the “goal”
e Assign a value to the frontier

* Pick a frontier closest to the goal (minimize distance)



Informed Search
Greedy Search

0,0)

(1,0)

Define a heuristic to target:

* Manhattan Distance

(1,4) ; * abs(xs-Xg)+abs(ys-Yg)




Informed Search
Greedy Search

n = state(init)
frontier.append (n)
while (frontier not empty)
n = pull state from frontier
visited.append(n)
if n = goal, return solution
for all actions in n
n’” = a(n)
if n’ not visited
priority = heuristic(goal,n’)
frontier.append (priority)

Fast Robots 2025
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Informed Search

Greedy Search
Search Order: N, E, S, W

e Is it complete?

 No 6 7 8 9
e What is the time complexity?

e O(bm) 5 4
 What is the space complexity?

« O(bm) 2 3
e Optimal? R

* No... 1

y




Search Algorithms, general

* Breadth First Search
 Complete and optimal
e ...but searches everything
« Lowest-Cost First Algorithm Considers parent cost
 Complete and optimal
e ... but it wastes time exploring in directions that aren’t promising
* Greedy Search Considers goal
 Complete (in most cases)
e ... only explores promising directions

Can we do better? A*
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Informed Search
A* (A-star) Search Order: N, E, S, W

n = state(init)
frontier.append (n)
while (frontier not empty)
n = pull state from frontier /f
if n = goal, return solution
for all actions in n
n’ = a(n)
if ((n’ not visited or
(visited and n’.cost < n old.cost)) A
priority = heuristic(goal,n’){fcost
frontier.append (priority) /
visited.append(n’) E{/
y




Informed Search
A* (A-star)
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A* Search

 What if the heuristic is too optimistic? Admissible heuristic
e Estimated cost < true cost

* What if the heuristic is too pessimistic? Inadmissible heuristic
» Estimated cost > true cost
* No longer guaranteed to be optimal

* What if the heuristic is just right?

* Pre-compute the cost between all nodes
» Feasible for you? = 2

g2
» % T, 0
ad




Informed Search
A* (A-star)

Is it complete?

e Yes!

What is the time complexity?

3 O(bm)

What is the space complexity?
o O(bm)

Optimal? A
* Yes, if the heuristic is admissible!




Summary

LCFS minimum path ~ Greedy A*  minimum path & efficient
7 12 | 15 10
4 . 6 9 /1
2 8 13 3 7 1




