Markov, Bayes Filter I Fast Robots, ECE4160/5160, MAE 4190/5190

E. Farrell Helbling, 3/20/25

Class Action Items

- Lab 7: Kalman Filtering: please do not leave this to the weekend.
- Lab 8: Stunts. The lab is posted, you have two options, the flip or the drift. Please try to get this done next week before spring break (or do it after spring break). I don't recommend taking the robot on a plane!
- Lab 3 regrade requests will close on Thursday midnight. Submit requests in canvas.
- Lab 4 grades delayed, found an error in the spreadsheet, will hopefully post grades later today!

- **Uninformed Searches** \bullet
 - Breadth First \bullet
 - Depth First
 - Dijkstra's (LCF)
- Informed Searches
 - Greedy
 - A*

Search Algorithms, General

- For every node, n
- There is a set of actions, a
- That moves you to a new node, n'

Fast Robots 2025

n'1

Uninformed Algorithms, General

n = state(init)frontier.append(n) while(frontier not empty) n = pull state from frontier append n to visited if n = goal, return solution for all actions in n n' = a(n)if n' not visited append n' to frontier

Fast Robots 2025

frontier visited

DFS: Last-In First-Out (LIFO)

BFS: First-In First-Out (FIFO)

LCFS: Prioritize cost

Depth First Search

- Is it complete?
 - Yes, but only on finite graphs
- What is the time complexity?
 - O(b^m)
- What is the space complexity? (0,3)

(2,4)

(3,4)

(0,4)

(1,4)

(2,3)

• O(bm)

Breadth First Search

- Is it complete?
 - Yes, as long as b is finite
- Is it optimal?
 - Yes
- What is the time complexity?
 - O(b^m) (0,1)

(0,3)

(1, 4)

(1,2)

(2,3)

(1,3)

- What is the space complexity?
 (0,2)
 - O(b^m)

(0,4) Memory grows exponentially with the depth of the graph

Fast Robots 2025

Search Order: N, E, S, W

Χ

Lowest-Cost First Search (LCFS) Consider parent cost!

- Is it complete?
 - Yes, as long as path costs are positive
- What is the time complexity?
 - O(b^{1+C/c})
- What is the space complexity?
 - O(b^{1+C/c})

- Go straight, cost 1
- Turn one quadrant, cost 1

Uninformed Search Algorithms

Criterion	BFS	DFS	LCFS
Complete	Yes (finite)	No (finite)	Yes (positive cost)
Time	O(b ^m)	O(b ^m)	O(b ^{1+C/c})
Space	O(b ^m)	O(bm)	O(b ^{1+C/c})
Optimal	Yes (identical cost)	No	Yes
When to use	 Memory is a nonissue Shallow solutions Minimal branching factors Shortest path needed 	 Memory is restricted Deep solutions 	 Care about cost over length of path

Informed Search Greedy Search

n = state(init)

frontier.append(n)

while(frontier not empty)

- n = pull state from frontier
 visited.append(n)
- if n = goal, return solution

for all actions in n

n' = a(n)

if n' not visited (0,3
 priority = heuristic(goal, n')

frontier.append(priority) (0,4)

Informed Search Greedy Search

- Is it complete?
 - No
- What is the time complexity?
 - O(b^m)
- What is the space complexity?
 - O(b^m)
- Optimal?
 - No...

Fast Robots 2025

Χ

Search Algorithms, general

- Breadth First Search
 - Complete and optimal
 - ...but searches everything
- Lowest-Cost First Algorithm
 - Complete and optimal
 - ... but it wastes time exploring in directions that aren't promising
- Greedy Search
 - Complete (in most cases)
 - ... only explores promising directions

Fast Robots 2025

Can we do better? A*

Considers parent cost

Considers goal

Informed Search A* (A-star)

n = state(init)

frontier.append(n)

while(frontier not empty)

- n = pull state from frontier
- if n = goal, return solution

for all actions in n

n' = a(n)

- if (n' not visited) priority = heuristic(goal,n')+cost frontier.append(priority)
- if (visited and n'.cost < n old.cost)</pre> visited.append(n')

Fast Robots 2025

Χ

Informed Search A* (A-star)

A* Search

- What if the heuristic is too optimistic?
 - Estimated cost < true cost
- What if the heuristic is too pessimistic?
 - Estimated cost > true cost
 - No longer guaranteed to be optimal
- What if the heuristic is just right?
 - Pre-compute the cost between all nodes
 - Feasible for you?

Fast Robots 2025

Admissible heuristic

Inadmissible heuristic

Informed Search A* (A-star)

- Is it complete?
 - Yes!
- What is the time complexity?
 - O(b^m)
- What is the space complexity?
 - O(b^m)
- Optimal?
 - Yes, if the heuristic is admissible!

Fast Robots 2025

A* minimum path & efficient 11 6 9 3 2 1 IU

Summary

Greedy

A* minimum path & efficient

Bayes Theorem + **Robot-Environment Model** Markov Assumption

Bayes Theorem Robot-Environment Model Markov Assumption

- Lost robot example
 - Sensor measures distance to the door
 - $p(X_0 = 1 \text{ or } 2 \text{ or } 3 \text{ or } 4 \text{ or } 5) = 1/5$
 - $p(x \mid z)$ can be hard to compute
 - What is p(z | x)?
 - If Z = 1, where are you most likely to be?
 - If Z = 0, where are you most likely to be?
 - If Z = 2, where are you most likely to be?

Fast Robots 2025

Likelihood Prior x: robot pose z: sensor data Marginal Likelihood (constant)

Bayes Theorem **Robot-Environment Model** Markov Assumption

Bayes Filter

- - Sensor measurements/ observations
 - Control actions

Two fundamental types of interaction between a robot and its environment:

Robot-Environment Model

- Helps us express a robot-environment interaction using probability
 - Typically modeled as a discrete time system
 - The state at time t will be denoted as X_t
 - A sensor measurement at time t will be denoted as z_t
 - A control action will be denoted as u_t
 - Induces a transition from x_{t-1} to x_t

Conventions as per Siegwart, R., Nourbakhsh, I.R. and Scaramuzza, D., 2011. Introduction to autonomous mobile robots. MIT press.

Robot-Environment Model Assumptions (arbitrary)

- The robot executes a control action u_t first and then takes a measurement z_t
- There is one control action u per time step t
 - This includes the legal action "do-nothing"
- There is only one measurement *z* per time step *t*
- Shorthand notation: $x_{t1:t2} = x_{t1}, x_{t1+1}, x_{t1+2}, \dots, x_{t2}$

Robot State

- Robot-specific:
 - Pose, velocity, sensor status, etc.
- Environment-specific:
 - Static variables: locations of walls, etc.
 - Dynamic variables: people, etc.
- ... context specific

Sensor Measurements/ Observations

Tend to increase the robot's knowledge

Control Actions

- ... change the state of the world
- Carry information about the change of robot state in the time interval (t - 1 : t]
- Tends to induce loss of knowledge

Fast Robots 2025

balance

Probabilistic Generative Laws

- The evolution of state and measurements is governed by probabilistic laws
 - State: How is *x_t* generated stochastically?
 - Measurements: How is z_t generated stochastically?
- State generation
 - x_t depends on $x_{0:t-1}$, $z_{1:t-1}$, and $u_{1:t}$
 - $p(x_t | x_{0:t-1}, z_{1:t-1}, u_{1:t})$...intractable!

Bayes Theorem **Robot-Environment Model**

Markov Assumption

Markov Assumption

The Markov assumption postulates that past and future data are independent *if one knows the current state*

- A stochastic model/ process that obeys the Markov assumption is a Markov model
 - This does not mean that x_t is deterministic based on x_{t-1}
- If we can model our robot as a Markov process...
 - We can recursively estimate *x_t* using:
 - x_{t-1} , z_t , and u_t
 - But not $x_{0:t-1}$, $z_{1:t-1}$, and $u_{1:t}!$
 - Tractable!

Fast Robots 2025

Andrey Markov (1856–1922) was a Russian mathematician best known for his work on stochastic processes

Drunkards Walk

- Random walk on the number line
 - At each step, the position may change by +1 or -1 with equal probability
- The transition probabilities depend only on the current position, not on the manner in which the position was reached
- This is a Markov process!

Coin purse

- Contents
 - 5 quarters (25¢)
 - 5 dimes (10¢)
 - 5 nickels (5¢)
- Draw coins randomly, one at a time and place them on a table
- X_n is the total value of coins on the table after n draws
- Example:
 - First, I draw a nickel, what is $X_1 =$
 - Next I draw a dime, what is $X_2 =$

Coin purse

- Suppose...
 - In the first six draws, you pick all 5 nickels and 1 quarter, $X_6 = 50$ ¢
 - What can we say about X_7 ?

Is this a Markov Model?

- Contents
 - 5 quarters (25¢)
 - 5 dimes (10¢)
 - 5 nickels (5¢)

Bayes Theorem **Robot-Environment Model** Markov Assumption

Bayes Filter

State Generative Model

- x_t is generated stochastically from the state x_{t-1}
- x_t depends on $x_{0:t-1}$, $z_{1:t-1}$, and $u_{1:t}$, and $p(x_t | x_{0:t-1}, z_{1:t-1}, u_{1:t})$... intractable!
- If state x_t is modeled under the Markov Assumption, then
 - $p(x_t | x_{0:t-1}, z_{1:t-1}, u_{1:t}) = p(x_t | x_{t-1}, u_t)$
 - predict X_t

Fast Robots 2025

• Knowledge of only the previous state x_{t-1} and control u_t is sufficient to

Measurement Generative Model

- Similarly, the process by which measurements are generated are of importance
 - $p(z_t | x_{0:t-1}, z_{1:t-1}, u_{1:t})$
- If state *x_t* conforms to the **Markov Assumption**, then
 - $p(z_t | x_{0:t-1}, z_{1:t-1}, u_{1:t}) = p(z_t | x_t)$
 - The state x_t is sufficient to predict the (potentially noisy) measurements
 - Knowledge of any other variable, such as past measurements, controls, or even past states, is irrelevant under the Markov Assumption

Bayes Theorem + **Robot-Environment Model** Markov Assumption

Robot Belief

- Probabilistic robotics represents beliefs through posterior conditional probability distributions
 - Probability distributions over state variables conditioned on available data
 - The belief of a robot is the posterior distribution over the state of the environment, given all past sensor measurements and all past controls
 - Belief over a state variable x_t is denoted by $bel(x_t)$:

•
$$bel(x_t) = p(x_t | z_{1:t}, u_{1:t})$$

•
$$\overline{bel}(x_t) = p(x_t | z_{1:t-1}, u_{1:t})$$

• The (prior) belief is the belief before incorporating the latest measurement z_t :

Bayes Filter

 A recursive algorithm that calculates the belief distribution from measurements and control data

Bayes Filter

 A recursive algorithm that calculates the belief distribution from measurements and control data

Fast Robots 2025

,
$$u_t, z_t$$
):

Transition probability/ action model

(Prediction step)

Bayes Filter

 A recursive algorithm that calculates the belief distribution from measurements and control data

Fast Robots 2025

- ,Transition probability/ action model
 - (Prediction step)

(Update/measurement step)

Measurement probability/ sensor model

Kalman Filter Implementation

Kalman Filter
$$(\mu(t-1), \Sigma(t-1), u(t), I)$$

1. $\mu_p(t) = A\mu(t-1) + Bu(t)$
2. $\Sigma_p(t) = A\Sigma(t-1)A^T + \Sigma_u$
3. $K_{KF} = \Sigma_p(t)C^T(C\Sigma_p(t)C^T + \Sigma_z)$
4. $\mu(t) = \mu_p(t) + K_{KF}(z(t) - C\mu_p(t))$
5. $\Sigma(t) = (I - K_{KF}C)\Sigma_p(t)$
6. Return $\mu(t)$ and $\Sigma(t)$

Fast Robots 2025

State estimate: $\mu(t)$ State uncertainty: $\Sigma(t)$ Process noise: Σ_u Kalman filter gain: K_{KF} Measurement noise: Σ_z

1. Algorithm Bayes_Filter ($bel(x_{t-1}), u_t, z_t$) : ,Transition probability/ action model **for** all x_t do 2. $\overline{bel}(x_t) = \sum_{x_{t-1}} p(x_t | u_t, x_{t-1}) \ bel(x_{t-1})$ (Prediction step) 3. $bel(x_t) = \eta p(z_t | x_t) \overline{bel}(x_t)$ 4. (Update/measurement step) end for 5. Measurement probability/ sensor model 6. return $bel(x_t)$

Bayes Filter Dynamic stochastic model

- $p(x_t | x_{t-1}, u_t)$ is the state transition probability
- $p(z_t | x_t)$ is the measurement probability
 - How measurements are generated from the robot state x_t
 - Informally, you can think of measurements as noisy projections of X_{t}
- Remember that these prediction are stochastic and not deterministic

Fast Robots 2025

• How the robot state x_t evolves over time as a function of the control u_t

Bayes Filter Initial conditions

belief $bel(x_0)$ at time t = 0

Fast Robots 2025

To compute the posterior belief recursively, the algorithm requires an initial

,
$$u_t, z_t$$
):

(Prediction step)

(Update/measurement step)

Bayes Filter Initial conditions

- belief $bel(x_0)$ at time t = 0
- and assign zero everywhere else
- probability distribution over all the possible states

Fast Robots 2025

To compute the posterior belief recursively, the algorithm requires an initial

• If we know the initial state with absolute certainty, we can initialize a point mass distribution that centers all probability mass on the correct value of x_0

• If we are entirely ignorant of the initial state, we can initialize it with a uniform

References

- 1. Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT press, 2005.
- 2.<u>http://gki.informatik.uni-freiburg.de/teaching/ws0607/advanced/recordings/BayesFiltering.pdf</u>
- 3.<u>http://home.deib.polimi.it/restelli/MyWebSite/pdf/E05_h.pdf</u>
- 4.https://en.wikipedia.org/wiki/Markov chain
- 5.<u>https://en.wikipedia.org/wiki/Markov_model</u>
- 6.Image Sources:
 - a.<u>https://blog.robotig.com/a-brief-history-of-robots-in-manufacturing</u> b.https://northwesturbanist.files.wordpress.com/2015/01/20151104 082523.jpg https://expresswriters.com/is-the-dress-blue-black-white-or-gold-how-it-went-viral/ https://en.wikipedia.org/wiki/Andrey Markov

