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Class Action Items

• Lab 7: Kalman Filtering: please do not leave this to the weekend.


• Lab 8: Stunts. The lab is posted, you have two options, the flip or the drift. 
Please try to get this done next week before spring break (or do it after spring 
break). I don’t recommend taking the robot on a plane! 

• Lab 3 regrade requests will close on Thursday midnight. Submit requests in 
canvas.


• Lab 4 grades delayed, found an error in the spreadsheet, will hopefully post 
grades later today!
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Modeling path planning as a graph search problem
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Common alternatives


• Optimal control


• Potential fields
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Modeling path planning as a graph search problem
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Map 
Representation

Configuration 
SpaceReal World Graph 

Construction Graph Search

• Geometry-based graphs


• Topological Graphs


• Cell decomposition


• Visibility Graphs


• Sampling-based graphs


• RRT


• PRM



Modeling path planning as a graph search problem
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Map 
Representation

Configuration 
SpaceReal World Graph 

Construction

• Uninformed Searches


• Breadth First


• Depth First


• Dijkstra’s (LCF)


• Informed Searches


• Greedy


• A*

Graph Search



Search Algorithms, General

• For every node, n


• There is a set of actions, a


• That moves you to a new node, n’
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Uninformed Algorithms, General
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y

n = state(init) 

frontier.append(n) 

while(frontier not empty) 

n = pull state from frontier 

append n to visited 

if n = goal, return solution 

for all actions in n 

n’ = a(n) 

if n’ not visited 

append n’ to frontier

frontier visited

DFS: Last-In First-Out (LIFO)


BFS: First-In First-Out (FIFO)


LCFS: Prioritize cost



Depth First Search
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• Is it complete?

• Yes, but only on finite graphs


• What is the time complexity?

• O(bm)


• What is the space complexity?

• O(bm)

Memory grows linearly  
with the depth of the graph



Breadth First Search
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• Is it complete?

• Yes, as long as b is finite


• Is it optimal?

• Yes


• What is the time complexity?

• O(bm)


• What is the space complexity?

• O(bm)
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Lowest-Cost First Search (LCFS)
Consider parent cost!
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• Go straight, cost 1

• Turn one quadrant, cost 1
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• Is it complete?

• Yes, as long as path costs are positive


• What is the time complexity?

• O(b1+C/c)


• What is the space complexity?

• O(b1+C/c)



Uninformed Search Algorithms
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Criterion BFS DFS LCFS

Complete Yes (finite) No (finite) Yes (positive cost)

Time O(bm) O(bm) O(b1+C/c)

Space O(bm) O(bm) O(b1+C/c)

Optimal Yes (identical cost) No Yes

When to use
• Memory is a nonissue

• Shallow solutions

• Minimal branching factors

• Shortest path needed

• Memory is restricted

• Deep solutions

• Care about cost over length 
of path



Informed Search
Greedy Search
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3 4

Define a heuristic to target:


• Manhattan Distance


• abs(xs-xg)+abs(ys-yg)
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n = state(init) 

frontier.append(n) 

while(frontier not empty) 

 n = pull state from frontier 

 visited.append(n) 

 if n = goal, return solution 

 for all actions in n 

 n’ = a(n) 

 if n’ not visited 

  priority = heuristic(goal,n’) 

   frontier.append(priority)



Informed Search
Greedy Search
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Search Order: N, E, S, W
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• Is it complete?

• No


• What is the time complexity?

• O(bm)


• What is the space complexity?

• O(bm)


• Optimal?

• No…

5

7 8 9



Considers goal

Considers parent cost

Search Algorithms, general
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• Breadth First Search

• Complete and optimal

• …but searches everything


• Lowest-Cost First Algorithm

• Complete and optimal

• … but it wastes time exploring in directions that aren’t promising


• Greedy Search

• Complete (in most cases)

• … only explores promising directions

Can we do better? A*



Informed Search
A* (A-star)
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Search Order: N, E, S, W
n = state(init) 

frontier.append(n) 

while(frontier not empty) 

 n = pull state from frontier 

 if n = goal, return solution 

 for all actions in n 

 n’ = a(n) 

 if (n’ not visited) 

  priority = heuristic(goal,n’)+cost 

   frontier.append(priority) 

if (visited and n’.cost < n_old.cost) 

   visited.append(n’)
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Informed Search
A* (A-star)

Fast Robots 2025

(0,0)

S

1

2

x

y

Search Order: N, E, S, W

73

4

6

5

11

8

9

12

(0,1) (1,0)1 2
4 45 6

(0,2)
(1,1)

1 2
3 39 10

(2,0)1
3 10

(0,3) (1,2)1 2
2 212 13

(0,4)
(1,3)

1 2
3 1

1516 16 19

(2,1) (3,0)
1514

2 1
2 4

10

(1,4) 2
220

(2,3) (3,2)21
02

20



A* Search
• What if the heuristic is too optimistic?

• Estimated cost < true cost


• What if the heuristic is too pessimistic?

• Estimated cost > true cost

• No longer guaranteed to be optimal


• What if the heuristic is just right?

• Pre-compute the cost between all nodes

• Feasible for you?
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Admissible heuristic

Inadmissible heuristic



Informed Search
A* (A-star)
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• Is it complete?

• Yes!


• What is the time complexity?

• O(bm)


• What is the space complexity?

• O(bm)


• Optimal?

• Yes, if the heuristic is admissible!
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Summary
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Bayes Theorem 
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Bayes Filter
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Bayesian Inference

• Lost robot example

• Sensor measures distance to the door

• 


•  can be hard to compute

• What is ?

• If , where are you most likely to be?

• If , where are you most likely to be?

• If , where are you most likely to be?

p(X0 = 1 or 2 or 3 or 4 or 5) = 1/5
p(x |z)

p(z |x)
Z = 1
Z = 0
Z = 2

Fast Robots 2025

1 2 3 4 5

P(x |z) =
P(z |x)P(x)

P(z)
x: robot pose


z: sensor data

Posterior

Marginal Likelihood 
(constant)

Prior

Likelihood



Bayes Theorem 
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Robot-Environment Interaction

• Two fundamental types of interaction between a robot and its environment:


• Sensor measurements/ observations


• Control actions

Robot

Environment

Act 
(unpredictable)

Sense 
(noisy and limited)

(internal state)

(internal belief)



Robot-Environment Model

• Helps us express a robot-environment interaction using probability


• Typically modeled as a discrete time system


• The state at time  will be denoted as 


• A sensor measurement at time  will be denoted as 


• A control action will be denoted as 


• Induces a transition from  to 

t xt

t zt

ut

xt−1 xt

Conventions as per Siegwart, R., Nourbakhsh, I.R. and Scaramuzza, D., 2011. 
Introduction to autonomous mobile robots. MIT press.




Robot-Environment Model
Assumptions (arbitrary)

• The robot executes a control action  first and then takes a measurement 


• There is one control action  per time step 


• This includes the legal action “do-nothing”


• There is only one measurement  per time step 


• Shorthand notation: 

ut zt

u t

z t

xt1:t2 = xt1, xt1+1, xt1+2, …, xt2

Fast Robots 2025



Robot State

• Robot-specific:


• Pose, velocity, sensor status, etc.


• Environment-specific:


• Static variables: locations of walls, etc.


• Dynamic variables: people, etc.


• … context specific

(coords, orientation)

(map) 

(joint angles, 
velocities, 
accelerations)

(objects, 

texture)

Fast Robots 2025



Sensor Measurements/ Observations
• Tend to increase the robot’s knowledge

Fast Robots 2025

Control Actions
• … change the state of the world


• Carry information about the change of 
robot state in the time interval 


• Tends to induce loss of knowledge

(t − 1 : t]

balance



Probabilistic Generative Laws

• The evolution of state and measurements is governed by probabilistic laws


• State: How is  generated stochastically?


• Measurements: How is  generated stochastically?


• State generation


•  depends on , , and 


•

xt

zt

xt x0:t−1 z1:t−1 u1:t

p(xt |x0:t−1, z1:t−1, u1:t)

Fast Robots 2025

…intractable!



Bayes Theorem 
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Markov Assumption

• A stochastic model/ process that obeys the Markov assumption is a Markov model


• This does not mean that  is deterministic based on 


• If we can model our robot as a Markov process…


• We can recursively estimate  using:


• , , and 


• But not , , and !


• Tractable!

xt xt−1

xt

xt−1 zt ut

x0:t−1 z1:t−1 u1:t

Fast Robots 2025

Andrey Markov (1856–1922) was a 
Russian mathematician best known 
for his work on stochastic processes 

The Markov assumption postulates that past and future data are independent  
if one knows the current state



Drunkards Walk
• Random walk on the number line


• At each step, the position may change by +1 or -1 with equal probability


• The transition probabilities depend only on the current position, not on the 
manner in which the position was reached


• This is a Markov process!

Fast Robots 2025

1 2 3 4 5 6

P(X=4) =1
P(X=5) = 0.5P(X=3) = 0.5



Coin purse
• Contents

• 5 quarters (25¢)

• 5 dimes (10¢)

• 5 nickels (5¢)


• Draw coins randomly, one at a time and place them on a table


•  is the total value of coins on the table after  draws


• The sequence  is a stochastic process

• Example:


• First, I draw a nickel, what is 


• Next I draw a dime, what is 

Xn n
{Xn : n ∈ ℕ}

X1 =
X2 =

Fast Robots 2025

X1 X2 X3

5¢

15¢



Coin purse
• Suppose…


• In the first six draws, you pick all 5 nickels and 1 quarter, 


• What can we say about ?


• 

• Can we do better?

• Can you draw a nickel on the 7th draw?


•

X6 = 50¢

X7

P(X7 ≥ 0.55) = 1

P(X7 ≥ 0.6) = 1

Fast Robots 2025

• Contents

• 5 quarters (25¢)

• 5 dimes (10¢)

• 5 nickels (5¢)

• Is this a Markov Model?


• Can we tweak the definition of  to make it one?Xn
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State Generative Model

•  is generated stochastically from the state 


•  depends on , , and , and  … 
intractable!


• If state  is modeled under the Markov Assumption, then


•  


• Knowledge of only the previous state  and control  is sufficient to 
predict 

xt xt−1

xt x0:t−1 z1:t−1 u1:t p(xt |x0:t−1, z1:t−1, u1:t)

xt

p(xt |x0:t−1, z1:t−1, u1:t) = p(xt |xt−1, ut)

xt−1 ut
xt
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Measurement Generative Model

• Similarly, the process by which measurements are generated are of importance


• 


• If state  conforms to the Markov Assumption, then


•  


• The state  is sufficient to predict the (potentially noisy) measurements


• Knowledge of any other variable, such as past measurements, controls, or 
even past states, is irrelevant under the Markov Assumption

p(zt |x0:t−1, z1:t−1, u1:t)

xt

p(zt |x0:t−1, z1:t−1, u1:t) = p(zt |xt)

xt

Fast Robots 2025
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Robot Belief

• Probabilistic robotics represents beliefs through posterior conditional probability distributions


• Probability distributions over state variables conditioned on available data


• The belief of a robot is the posterior distribution over the state of the environment, given all 
past sensor measurements and all past controls


• Belief over a state variable  is denoted by :


• 


• The (prior) belief is the belief before incorporating the latest measurement :


•

xt bel(xt)

bel(xt) = p(xt |z1:t, u1:t)

zt

bel(xt) = p(xt |z1:t−1, u1:t)
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Bayes Filter

• A recursive algorithm that calculates the belief distribution from 
measurements and control data

Fast Robots 2025

1. Algorithm Bayes_Filter  

2. for all  do 

3.  

4.  

5. end for 

6. return  

(bel(xt−1), ut, zt) :

xt

bel(xt) = Σxt−1
p(xt |ut, xt−1) bel(xt−1)

bel(xt) = η p(zt |xt) bel(xt)

bel(xt)



Bayes Filter

• A recursive algorithm that calculates the belief distribution from 
measurements and control data
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1. Algorithm Bayes_Filter  

2. for all  do 

3.  

4.  

5. end for 

6. return  

(bel(xt−1), ut, zt) :

xt

bel(xt) = Σxt−1
p(xt |ut, xt−1) bel(xt−1)

bel(xt) = η p(zt |xt) bel(xt)

bel(xt)

(Prediction step)

Transition probability/ action model



Bayes Filter

• A recursive algorithm that calculates the belief distribution from 
measurements and control data
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1. Algorithm Bayes_Filter  

2. for all  do 

3.  

4.  

5. end for 

6. return  

(bel(xt−1), ut, zt) :

xt

bel(xt) = Σxt−1
p(xt |ut, xt−1) bel(xt−1)

bel(xt) = η p(zt |xt) bel(xt)

bel(xt)

(Prediction step)

Transition probability/ action model

Measurement probability/ sensor model

(Update/measurement step)



Kalman Filter Implementation
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State estimate: 

State uncertainty: 

Process noise: 

Kalman filter gain: 

Measurement noise: 

μ(t)
Σ(t)

Σu
KKF

Σz

Kalman Filter ( )

1. 


2. 


3. 


4. 


5. 


6. Return  and 

μ(t − 1), Σ(t − 1), u(t), z(t)
μp(t) = Aμ(t − 1) + Bu(t)
Σp(t) = AΣ(t − 1)AT + Σu

KKF = Σp(t)CT(CΣp(t)CT + Σz)−1

μ(t) = μp(t) + KKF(z(t) − Cμp(t))
Σ(t) = (I − KKFC)Σp(t)

μ(t) Σ(t)

prediction

update



Bayes Filter
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1. Algorithm Bayes_Filter  

2. for all  do 

3.  

4.  

5. end for 

6. return  

(bel(xt−1), ut, zt) :

xt

bel(xt) = Σxt−1
p(xt |ut, xt−1) bel(xt−1)

bel(xt) = η p(zt |xt) bel(xt)

bel(xt)

(Prediction step)

Transition probability/ action model

Measurement probability/ sensor model

(Update/measurement step)

t-1

t
Etc..



Bayes Filter
Dynamic stochastic model

•  is the state transition probability


• How the robot state  evolves over time as a function of the control 


•  is the measurement probability


• How measurements are generated from the robot state 


• Informally, you can think of measurements as noisy projections of 


• Remember that these prediction are stochastic and not deterministic

p(xt |xt−1, ut)

xt ut

p(zt |xt)

xt

xt

Fast Robots 2025



Bayes Filter
Initial conditions
• To compute the posterior belief recursively, the algorithm requires an initial 

belief bel(x0) at time t = 0
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1. Algorithm Bayes_Filter  

2. for all  do 

3.  

4.  

5. end for 

6. return  

(bel(xt−1), ut, zt) :

xt

bel(xt) = Σxt−1
p(xt |ut, xt−1) bel(xt−1)

bel(xt) = η p(zt |xt) bel(xt)

bel(xt)

(Prediction step)

(Update/measurement step)



Bayes Filter
Initial conditions
• To compute the posterior belief recursively, the algorithm requires an initial 

belief 


• If we know the initial state with absolute certainty, we can initialize a point 
mass distribution that centers all probability mass on the correct value of 
and assign zero everywhere else


• If we are entirely ignorant of the initial state, we can initialize it with a uniform 
probability distribution over all the possible states

bel(x0) at time t = 0

x0

Fast Robots 2025
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