# **Motion models** Fast Robots, ECE4160/5160, MAE 4190/5190

E. Farrell Helbling, 3/25/25



# **Class Action Items**

- 8am. Enjoy your spring break!
- Lab 8: Stunts!
- Today motion models, Thursday measurement models.

Fast Robots 2025



### • Lab 7: Kalman Filter, due today or tomorrow at 8am. If you choose to take a slip week, the lab is due Tuesday April 8th at 8am or Wednesday April 9th at

# **Markov Assumption**

### The Markov assumption postulates that past and future data are independent *if one knows the current state*

- If we can model our robot as a Markov process...
  - We can recursively estimate  $x_t$
  - State generative model
    - $p(x_t | x_{0:t-1}, z_{1:t-1}, u_{1:t}) = p(x_t | x_{t-1}, u_t)$
  - Measurement generative model
    - $p(z_t | x_{0:t}, z_{1:t-1}, u_{1:t}) = p(z_t | x_t)$

Fast Robots 2025





Andrey Markov (1856–1922) was a Russian mathematician best known for his work on stochastic processes







# Bayes Theorem **Robot-Environment Model** Markov Assumption





# **Bayes Filter**

 A recursive algorithm that calculates the belief distribution from measurements and control data







### Fast Robots 2025



(Prediction step)

### (Update/measurement step)

# **Bayes Filter**

### This is a lot of computation!

1. Algorithm Bayes\_Filter ( $bel(x_{t-1}), u_t, z_t$ ): **for** all  $x_t$  do 2.  $\overline{bel}(x_t) = \sum_{x_{t-1}} p(x_t | u_t, x_{t-1}) \ bel(x_{t-1})$ 3.  $bel(x_t) = \eta \ p(z_t | x_t) \ bel(x_t)$ 4. end for 6. return  $bel(x_t)$ 



### $bel(x_{t-1})$ (Prediction step)

### (Update/measurement step)



## **Bayes Filter** Markov Assumption Violations

### This is a lot of computation!

- Typical violations include:
  - Environmental dynamics not included in  $x_t$
  - Inaccuracies in the probabilist models  $p(x_t | x_{t-1}, u_t)$ , and  $p(z_t | x_t)$
  - Approximation errors when representing belief functions
- Incomplete state representations are often preferable to reduce computational complexity of the Bayes filter algorithm
- In practice, Bayes filters have been found to be surprisingly robust to such violations





Bayes Example



# **Bayes Filter – Example**

- A robot can observe a door with a sensor and interact by pushing
- The door may be in one of two states open or closed
- At any time, the robot can either **push** or **NOP**
- Both sensors and actuators on the robot are noisy.









# Bayes Filter – Example

- The probability that the robot can sense an open door is 0.6
- The probability that the robot can sense an closed door is 0.8
- After a **push** action, probability that a door is **open** if it was previously open is 1
- After a push action, probability that a door is open if it was previously closed is 0.8
- If the robot does nothing, the door continues to be in the previous state.







### **Bayes Filter – Example** Measurement model

- The probability that the robot can sense an open door is 0.6
- The probability that the robot can sense a closed door is 0.8
- Measurement model:  $p(z_t | x_t)$ 
  - $p(Z_t = \text{open} | X_t = \text{is_open})$
  - $p(Z_t = closed | X_t = is_open)$
  - $p(Z_t = closed | X_t = is\_closed)$
  - $p(Z_t = \text{open} | X_t = \text{is\_closed})$

Fast Robots 2025



### ense an **open** door is 0.6 ense a **closed** door is 0.8





## **Bayes Filter — Example** Action model

- After a **push** action, probability that a door is **open** if it was previously open is 1
- After a **push** action, probability that a door is **open** if it was previously closed is 0.8
- If the robot does nothing, the door continues to be in the previous state.
- Action model:  $p(x_t | u_t, x_{t-1})$ 
  - $p(X_t = \text{is_open} | U_t = \text{push}, X_{t-1} = \text{is_open})$
  - $p(X_t = \text{is\_closed} | U_t = \text{push}, X_{t-1} = \text{is\_open})$
  - $p(X_t = \text{is_open} | U_t = \text{push}, X_{t-1} = \text{is_closed})$
  - $p(X_t = \text{is\_closed} | U_t = \text{push}, X_{t-1} = \text{is\_closed})$







## **Bayes Filter — Example** Action model

- After a **push** action, probability that a door is **open** if it was previously open is 1
- After a **push** action, probability that a door is **open** if it was previously closed is 0.8
- If the robot does nothing, the door continues to be in the previous state.
- Action model:  $p(x_t | x_{t-1}, u_t)$
- $p(X_t = \text{is_open} | U_t = \text{NOP}, X_{t-1} = \text{is_open})$
- $p(X_t = \text{is\_closed} | U_t = \text{NOP}, X_{t-1} = \text{is\_open})$
- $p(X_t = \text{is_open} | U_t = \text{NOP}, X_{t-1} = \text{is_closed})$
- $p(X_t = \text{is\_closed} | U_t = \text{NOP}, X_{t-1} = \text{is\_closed})$







### **Bayes Filter — Example Problem Setup**

1. Algorithm Bayes\_Filter ( $bel(x_{t-1}), u_t, z_t$ ) : for all  $x_t$  do  $\overline{bel}(x_t) = \sum_{x_{t-1}} p(x_t | u_t, x_{t-1}) \ bel(x_{t-1})$ 3.  $bel(x_t) = \eta \ p(z_t | x_t) \ bel(x_t)$ 4. end for 5. 6. return  $bel(x_t)$ 

### Fast Robots 2025



### (Prediction step)

### (Update/measurement step)

### **Bayes Filter – Example Prediction Step - incorporate action**

 $bel(X_0 = is_open) = bel(X_0 = is_closed) = 0.5$   $U_1 = NOP$   $Z_1 = open$ 

$$\overline{bel}(x_1) = \sum_{x_0} p(x_1 | u_1, x_0) \ bel(x_0)$$

$$\overline{bel}(x_1) = p(x_1 | U_1 = \text{NOP}, X_0 = \text{is_ope}$$

Let's suppose  $X_1 = is\_closed$ 

Fast Robots 2025



### en) $bel(X_0 = is_open)$

 $bel(X_1 = is\_closed) = p(X_1 = is\_closed | U_1 = NOP, X_0 = is\_open) bel(X_0 = is\_open)$  $+p(X_1 = \text{is\_closed} | U_1 = \text{NOP}, X_0 = \text{is\_closed}) bel(X_0 = \text{is\_closed})$ 



## **Bayes Filter – Example Update Step - incorporate measurement**

- $bel(X_1 = is_{open}) = bel(X_1 = is_{closed}) = 0.5$   $U_1 = NOP$   $Z_1 = open$  $bel(x_1) = \eta \ p(Z_1 = open | x_1) \ bel(x_1)$ For two possible cases,  $X_1 = is_{open}$  and  $X_1 = is_{closed}$ , we compute:  $bel(X_1 = is\_open) = \eta \ p(Z_1 = open | X_1 = is\_open) \ bel(X_1 = is\_open)$  $= \eta \times 0.6 \times 0.5 = \eta \ 0.3$  $bel(X_1 = is\_closed) = \eta \ p(Z_1 = open | X_1 = is\_closed) \ bel(X_1 = is\_closed)$  $= \eta \times 0.2 \times 0.5 = \eta 0.1$
- Normalizing constant,  $\eta = (0.3 + 0.1)^{-1} = 2.5$ :
  - **Better than initial belief at t=0!**
  - $bel(X_1 = is_{open}) = \eta \ 0.3 = 0.75$  $bel(X_1 = is\_closed) = \eta \ 0.1 = 0.25$





### **Bayes Filter – Example** Time step 2

Prediction step:

 $bel(X_2 = is_{open}) = 1 \times 0.75 + 0.8 \times 0.25 = 0.95$  $bel(X_2 = is\_closed) = 0 \times 0.75 + 0.2 \times 0.25 = 0.05$ 

Measurement update:

 $bel(X_2 = is_{open}) = \eta \times 0.6 \times 0.95 \approx 0.983$  $bel(X_2 = is\_closed) = \eta \times 0.2 \times 0.05 \approx 0.017$  Fast Robots 2025



 $bel(X_1 = is_{open}) = 0.75$  $bel(X_1 = is\_closed) = 0.25$  $U_2 = \text{push}$  $Z_2 = open$ 

Way better than the initial belief at t=0!





# **Summary of Bayes Filter**

- The robot performs a series of alternating actions/ measurements
- Given:
  - Sensor model:  $p(z_t | x_t)$
  - Action model:  $p(x_t | u_t, x_{t-1})$
  - Initial conditions:  $p(x_0)$
- Compute:
  - State of dynamic system
  - Posterior of the state (belief):  $bel(x_t)$



| 1. | <b>Algorithm Bayes_Filter</b> ( <i>bel</i> ( $x_{t-1}$ ), $u_t$ , $z_t$ ) : |
|----|-----------------------------------------------------------------------------|
| 2. | for all $x_t$ do                                                            |
| 3. | $\overline{bel}(x_t) = \sum_{x_{t-1}} p(x_t   u_t, x_{t-1}) \ bel(x_{t-1})$ |
| 4. | $bel(x_t) = \eta p(z_t   x_t) \overline{bel}(x_t)$                          |
| 5. | end for                                                                     |
| 6. | <b>return</b> $bel(x_t)$                                                    |

$$p(x_t \mid u_1, z_1, ..., u_t, z_t)$$



# **Summary of Bayes Filter**

- Prediction Step:
  - Incorporate action, which increases uncertainty
  - Compute  $bel(x_t) = p(x_t | u_{1:t}, z_{1:t-1})$
  - Requires action model:  $p(x_t | u_t, x_{t-1})$
- Measurement/ update step:
  - Decreases uncertainty
  - Compute  $bel(x_t) = p(x_t | u_{1:t}, z_{1:t})$
  - Requires sensor model:  $p(z_t | x_t)$



| 1. | <b>Algorithm Bayes_Filter</b> ( $bel(x_{t-1}), u_t, z_t$ ) :                |
|----|-----------------------------------------------------------------------------|
| 2. | <b>for</b> all $x_t$ do                                                     |
| 3. | $\overline{bel}(x_t) = \sum_{x_{t-1}} p(x_t   u_t, x_{t-1}) \ bel(x_{t-1})$ |
| 4. | $bel(x_t) = \eta \ p(z_t   x_t) \ \overline{bel}(x_t)$                      |
| 5. | end for                                                                     |
| 6. | <b>return</b> $bel(x_t)$                                                    |



# Motion Model $p(x_t | x_{t-1}, u_t)$



# **Bayes Filter**



### Fast Robots 2025



# $(x_{t-1}), u_t, z_t):$ **Transition probability/ action model** $(x_{t-1}) bel(x_{t-1})$ **(Prediction step)**

# **Robot Motion**

• Mobile robots on a plane

• Robot pose 
$$x_t = (x, y, \theta)^T$$

- Robot motion is inherently uncertain
  - Transition model:  $p(x_t | u_t, x_{t-1})$
- How can we model  $p(x_t | u_t, x_{t-1})$  based on kinematic equations?
  - Velocity model
  - Odometry model







- Gaussian, normal distribution, bell curve
- Defined by two parameters:
  - mean  $\mu$
  - standard deviation  $\sigma$
- Can be defined for multidimensional data







- 3 inputs:  $f(x \mid \mu, \sigma^2)$
- 2 inputs:  $f(x \mu | 0, \sigma^2)$



2.



- Sampling algorithms output samples from a given distribution
- Often used to approximate distributions











# Velocity Model



- $u = (v_{right}, v_{left})$
- $u = (v_{COM}, \omega_{COM})$

















### Fast Robots 2025



### Rotation $\gamma$ at new pose



# Velocity model

- Exact motion:  $x_t = (x', y', \theta')^T$
- Start state:  $x_{t-1} = (x, y, \theta)^T$
- Control data:  $u_t = (v_t, \omega_t)^T$
- Under the assumption that both velocity components are kept fixed over the time interval
- ... and then we add  $\gamma$





# Velocity model

Algorithm motion\_model\_velocity( $x_t, u_t, x_{t-1}$ ):

2: 
$$\mu = \frac{1}{2} \frac{(x - x')\cos\theta + (y - y')\sin\theta}{(y - y')\cos\theta - (x - x')\sin\theta}$$

3: 
$$x^* = \frac{x+x}{2} + \mu(y-y')$$

4: 
$$y^* = \frac{y+y'}{2} + \mu(x'-x)$$

5: 
$$r^* = \sqrt{(x - x^*)^2 + (y - y^*)^2}$$

6: 
$$\Delta \theta = \operatorname{atan2}(y' - y^*, x' - x^*) - \operatorname{atan2}(y - y^*, x - x^*)$$

$$\hat{v} = \frac{\Delta\theta}{\Delta t} r$$

1:

8: 
$$\hat{\omega} = \frac{\overline{\Delta}\theta}{\Delta t}$$

Ideal control values

9: 
$$\hat{\gamma} = \frac{\overline{\theta' - \theta}}{\Delta t} - \hat{\omega}$$

Fast Robots 2025



• Calculate the error-free control between the states  $x_{t-1}$  and  $x_t$ 

- How to add probability?
  - $f(v_t | \hat{v}, \sigma_v^2)$

• 
$$f(\omega_t | \hat{\omega}, \sigma_{\omega}^2)$$

•  $f(\gamma_t | \hat{\gamma}, \sigma_{\gamma}^2)$ 

# Velocity model

Algorithm motion\_model\_velocity( $x_t, u_t, x_{t-1}$ ):

2: 
$$\mu = \frac{1}{2} \frac{(x - x')\cos\theta + (y - y')\sin\theta}{(y - y')\cos\theta - (x - x')\sin\theta}$$

3: 
$$x^* = \frac{x+x}{2} + \mu(y-y')$$

4: 
$$y^* = \frac{y+y'}{2} + \mu(x'-x)$$

5: 
$$r^* = \sqrt{(x - x^*)^2 + (y - y^*)^2}$$

6: 
$$\Delta \theta = \operatorname{atan2}(y' - y^*, x' - x^*) - \operatorname{atan2}(y - y^*, x - x^*)$$

7: 
$$\hat{v} = \frac{\Delta \theta}{\Delta t} r^*$$

1:

8: 
$$\hat{\omega} = \frac{\Delta\theta}{\Delta t}$$

9: 
$$\hat{\gamma} = \frac{\theta' - \theta}{\Delta t} - \hat{\omega}$$

10: 
$$return \operatorname{prob}(v - \hat{v}, \alpha_1 |v| + \alpha_2 |\omega|) \cdot \operatorname{prob}(\omega + \frac{1}{2} |v| + \frac{1}{2} |\omega|)$$

Fast Robots 2025



• Calculate the error-free control between the states  $x_{t-1}$  and  $x_t$ 

How to add probability?

•  $f(v_t | \hat{v}, \sigma_v^2)$ 

$$f(v_t - \hat{v} \mid 0, \sigma_v^2)$$

•  $f(\omega_t | \hat{\omega}, \sigma_{\omega}^2)$ 





# Velocity motion model



• The velocity motion model for different noise parameter settings for the same control projected in the x-y space

Fast Robots 2025



### (darker regions are more probable)



# Velocity motion model with a map

(a)

 $p(x_t \mid u_t, x_{t-1})$ 





# Sampling from velocity model

- 1:  $\hat{v} = v + \mathbf{sample}(\alpha)$ 2:  $\hat{\omega} = \omega + \mathbf{sample}(\omega)$ 3:
- $\hat{\gamma} = \mathbf{sample}(\alpha_5 | v |$ 4:
- $x' = x \frac{\hat{v}}{\hat{\omega}} \sin \theta +$ 5:

8:

- $y' = y + \frac{\hat{v}}{\hat{\omega}} \cos \theta \theta$ 6:
- $\theta' = \theta + \hat{\omega}\Delta t + \hat{\gamma}\Delta$ 7:
  - return  $x_t = (x', y', \theta')^T$

Fast Robots 2025



### Algorithm sample\_motion\_model\_velocity( $u_t, x_{t-1}$ ):

$$\begin{aligned} \alpha_1 |v| + \alpha_2 |\omega|) \\ \alpha_3 |v| + \alpha_4 |\omega|) \\ |+ \alpha_6 |\omega|) \\ \frac{\hat{v}}{\hat{\omega}} \sin(\theta + \hat{\omega}\Delta t) \\ \frac{\hat{v}}{\hat{\omega}} \cos(\theta + \hat{\omega}\Delta t) \\ \Delta t \end{aligned}$$

# Sampling from velocity model









- $u = (v_{right}, v_{left})$
- $u = (v_{COM}, \omega_{COM})$
- How would you use this in your system?
- Pros
  - Prediction/planning
- Cons
  - Parameter tuning
  - Inaccurate











# Odometry Model $u_t = (\overline{x_{t-1}}, \overline{x}_t)^T$



# **Odometry Model Parameters**

 $\delta_{trans}$ 



Fast Robots 2025

 $\delta_{rot2}$ 

 $(\bar{x}', \bar{y}', \bar{\theta}')^T$ 



# **Odometry Model Parameters**

- Relative odometry motion is transformed into a sequence of three steps
  - Initial rotation  $\delta_{rot1}$
  - Translation  $\delta_{trans}$
  - Final Rotation  $\delta_{rot2}$
- These three parameters are sufficient to reconstruct the relative motion between two robot states

• 
$$u_t = (\delta_{rot1}, \delta_{trans}, \delta_{rot2})^T$$

### Fast Robots 2025









 $(\bar{x}', \bar{y}', \bar{\theta}')^T$ 

# **Odometry Model Parameters**

$$\delta_{rot1} = \operatorname{atan2}(\bar{y}' - \bar{y}, \bar{x}' - \bar{x}) - \bar{\theta}$$

$$\delta_{trans} = \sqrt{(\bar{y}' - \bar{y})^2 + (\bar{x}' - \bar{x})^2}$$

$$\delta_{rot2} = \bar{\theta}' - \bar{\theta} - \delta_{rot1}$$

### Fast Robots 2025



 $\delta_{trans}$ 



 $(\bar{x}, \bar{y}, \bar{\theta})^T$ 



 $(\bar{x}', \bar{y}', \bar{\theta}')^T$ 

# **Odometry Model Algorithm**

1. Algorithm motion\_model\_odometry  $(x_t, u_t, x_{t-1})$ :

2. 
$$\delta_{rot1} = \operatorname{atan2}(\bar{y'} - \bar{y}, \bar{x'} - \bar{x}) - \bar{\theta}$$

3. 
$$\delta_{trans} = \sqrt{(\bar{x}' - \bar{x})^2 + (\bar{y}' - \bar{y})^2}$$

4. 
$$\delta_{rot2} = \bar{\theta'} - \bar{\theta} - \delta_{rot1}$$

5. 
$$\hat{\delta}_{rot1} = \mathtt{atan2}(y'-y,x'-x) - \theta$$

6. 
$$\hat{\delta}_{trans} = \sqrt{(x'-x)^2 + (y'-y)^2}$$

7. 
$$\hat{\delta}_{rot2} = \theta' - \theta - \hat{\delta}_{rot1}$$

8. 
$$p_1 = \mathbf{prob}(\delta_{rot1} - \hat{\delta}_{rot1}, \alpha_1 \hat{\delta}_{rot1}^2 + \alpha_2 \hat{\delta}_{trans}^2)$$

9. 
$$p_2 = \mathbf{prob}(\delta_{trans} - \hat{\delta}_{trans}, \alpha_3 \hat{\delta}_{trans}^2 + \alpha_4 \hat{\delta}_{rot1}^2 + \alpha_4 \hat{\delta}_{rot2}^2)$$

10. 
$$p_3 = \mathbf{prob}(\delta_{rot2} - \hat{\delta}_{rot2}, \alpha_1 \hat{\delta}_{rot2}^2 + \alpha_2 \hat{\delta}_{trans}^2)$$

11. return  $p_1.p_2.p_3$ 

Fast Robots 2025



Calculate the relative motion parameters from odometry readings *(what the robot did)* 

Calculate the relative motion parameters for the given states  $x_{t-1}$  and  $x_t$ (what the robot did ideally)

# **Odometry Sampling Model Algorithm**

1. Algorithm sample\_motion\_model\_odometry( $x_{t-1}, u_t$ ) :

2. 
$$\delta_{rot1} = \mathtt{atan2}(\bar{y'} - \bar{y}, \bar{x'} - \bar{x}) - \bar{\theta}$$

3. 
$$\delta_{trans} = \sqrt{(\bar{x'} - \bar{x})^2 + (\bar{y'} - \bar{y})^2}$$

4. 
$$\delta_{rot2} = \bar{\theta}' - \bar{\theta} - \delta_{rot1}$$

5. 
$$\hat{\delta}_{rot1} = \delta_{rot1} - \mathbf{sample}(\alpha_1 \hat{\delta}_{rot1}^2 + \alpha_2 \hat{\delta}_{trans}^2)$$

6. 
$$\hat{\delta}_{trans} = \delta_{rot1} - \mathbf{sample}(\alpha_3 \hat{\delta}_{trans}^2 + \alpha_4 \hat{\delta}_{rot1}^2 + \alpha_4 \hat{\delta}_{rot2}^2)$$

7. 
$$\hat{\delta}_{rot2} = \delta_{rot1} - \mathbf{sample}(\alpha_1 \hat{\delta}_{rot2}^2 + \alpha_2 \hat{\delta}_{trans}^2)$$

8. 
$$x' = x + \hat{\delta}_{trans} \cos(\theta + \hat{\delta}_{rot1})$$

9. 
$$y' = y + \hat{\delta}_{trans} \sin(\theta + \hat{\delta}_{rot1})$$

10. 
$$\theta' = \theta + \hat{\delta}_{rot1} + \hat{\delta}_{rot2}$$

11. return 
$$x_t = (x', y', \theta')^T$$

### Fast Robots 2025



Calculate the relative motion parameters from odometry readings

Add noise to calculated motion parameters

Calculate the sample state

# Odometry model

- $u_t = (\bar{x}_{t-1}, \bar{x}_t)^T$
- How would you use this model in your system?
- Odometry is available after the robot has moved
  - Can be used for estimation algorithms (e.g., localization and mapping)
  - Cannot be used for prediction (e.g., probabilistic motion planning)



# Sampling from Odometry Model

(b)

(a)



(a) (b)









### Repeated sampling from our odometry motion model





# References

2.<u>http://ais.informatik.uni-freiburg.de/teaching/ss11/robotics/slides/06-motion-models.pdf</u>

Fast Robots 2025



# 1.Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT press, 2005.