Sensor models Fast Robots, ECE4160/5160, MAE 4190/5190

E. Farrell Helbling, 3/27/25

Class Action Items

- Wednesday April 9th.
- Lab 8: Stunts! Due the Tuesday/ Wednesday following spring break.
 - We already have a number of successful flips!
 - Notes if you didn't hear me in Lab:
 - to weight the car in the front.

 - about FIFO
- Please get some rest over spring break!

Fast Robots 2025

• Grades for lab 4 and lab 5 were posted on Wednesday, please get regrade requests in by

• Lab 7: Kalman Filter, due today or tomorrow at 8am. If you choose to take a slip week, the lab is due Tuesday April 8th at 8am or Wednesday April 9th at 8am. Enjoy your spring break!

• The flip is essentially open loop, so if you want to do that, feel free. Importantly, you have

• If you want to get a better estimate of start and end position, you can do PID on orientation to make sure that if you don't flip straight you return to the start line.

• If you do the drift and you are using the DMA, please read Stephan Wagner's website

Midterm feedback

- We had 37 students respond out of the 58 enrolled
- Most of the feedback was really positive, thank you!
 - General tone of the feedback: class is hard, it is a lot of work, but it is super rewarding that we get to work on a real robotic system. Appreciate the open hours and the TA support.
- Specific areas for improvement:
 - office hour cancellation
 - getting grades back quicker
 - lab write ups

Midterm feedback

- Interesting ideas for future years:
 - Lab complexity, evening out workloads week-to-week.
 - Rearrange labs
 - you every week. I am learning a lot as we go as well about overall engagement and tweaks to the labs.
 - Write ups
 - Batch them? Only write one long write up after each subsection?
 - Time of due dates
- Anything else?

Fast Robots 2025

Super curious to hear your opinions on lab difficulty and workloads, we poll

You are almost done!

- Lab 1-4: implement robot
- Lab 5-8: control and stunts
- Lab 9-12 localization and mapping
 - Lab 9: mapping
 - Flipped classroom April 10th: simulator
 - Lab 10: localization simulation (S/U)
 - Lab 11: localization on the real robot
 - Lab 12: navigation
- Lectures
 - Bayes filter recap/ SLAM
 - Ethics
 - Guest Lectures: ASML, one TBD
 - Trivia and ECE Robotics Day

Bayes Filter

Fast Robots 2025

Lecture 17

- Odometry Model
- Velocity Model
- ,Transition probability/ action model
 - $bel(x_{t-1})$ (Prediction step)

(Update/measurement step)

Measurement probability/ sensor model

Sensor Models $p(z_t | x_t)$

Fast Robots 2025

$p(z_t | x_t, m)$

Sensors for Mobile Robots

- **Contact Sensors**: bumpers
- Internal/ Proprioceptive Sensors:
 - Accelerometers (spring-mounted masses),
 - Gyroscopes (spinning mass, laser light),
 - Compasses, inclinometers (magnetic field, gravity)
- Range Sensors:
 - Infrared (intensity)
 - Sonar (time of flight)
 - Radar (phase and frequency)
 - Laser range finders (triangulation, ToF, phase)
- Visual sensors: Cameras
- Satellite-based sensors: GPS

Sensor Model

- Probabilistic robotics explicitly models the noise in exteroceptive sensor measurements
 - What about proprioceptive sensors?
- Where does the noise come from?

Range Sensor Inaccuracies "noise"

Readings > true distance

- Surface material
- Angle between surface normal and direction of sensor cone
- Width of the sensor cone of measurement
- Sensitivity of the sensor cone

• Readings < true distance

- Crosstalk between different sensors
- Unmodeled objects in the proximity of the robot, such as people

Probabilistic Sensor Model

• Perfect sensor models...

• z = f(x)

- ... practically impossible
-computationally intractable
- Practical sensor models...
 - $p(z \mid x)$
- Three common sensor models
 - Beam model
 - Likelihood model
 - Feature-based model

Fast Robots 2025

Until now our sensor models have been simple

- p(z = correct)
- p(z | x) for a small state space

Beam Model

Beam model of range finders

• Let there be K individual measurement values within a measurement z_t

 $z_t = \{z_t^1, z_t^2, \dots, z_t^K\}$

- Individual measurements are independent given the robot state $p(z_t, x_t, m) = \prod_{k=1}^{K} p(z_t^k | x_t, m) \qquad \begin{array}{c} \text{Sensor measurements are caused} \\ \text{by real world objects} \end{array}$
- Can you think of violations to that assumption?
 - People, errors in the map model *m*, approximations in the posterior, etc.
 - But it makes computation much more tractable

Range measurements Typical measurement errors

Range measurements Typical measurement errors

- Correct range measurements
 - Beams reflected by obstacles
- Unexpected objects
 - Beams reflected by persons
 - Crosstalk
- Failures -
- Random Measurements^{*}

Correct range measurements

- Reading: z_t^k
- True value: $z_{t}^{k^{*}}$
 - In a location-based map, $z_t^{k^*}$ is usually estimated by ray casting
- Measurement noise
 - Narrow Gaussian p_{hit} with mean $z_t^{k^*}$ and standard deviation σ_{hit}

Unexpected objects

- Real world is dynamic
- **Objects not contained in the map** can cause shorter readings
 - Treat them as part of the state vector and estimate their location
 - Treat them as sensor noise
- The likelihood of sensing unexpected objects decreases with range
- Model as exponential distribution p_{short}

Fast Robots 2025

 $p_{short}(z_t^k | x_t, m) = \begin{cases} \eta \lambda_{short} e^{-\lambda_{short} z_t^k} & \text{if } 0 \le z_t^k \le z_t^{k*} \\ 0 & \text{otherwise} \end{cases}$

Failures

- Obstacles might be missed altogether
- The result is a max-range measurement z_{max}
- Model as a **point-mass distribution** p_{max}

Fast Robots 2025

$Z_t^{k^*}$ Z_{max}

 $p_{max}(z_t^k | x_t, m) = I(z = z_{max}) = \begin{cases} 1 & \text{if } z = z_{max} \\ 0 & \text{otherwise} \end{cases}$

Random measurements

- Range finders can occasionally produce entirely inexplicable measurements
- Modelled as a uniform distribution p_{rand} over the measurement range

$$p_{rand}(z_t^k | x_t, m) = \begin{cases} \frac{1}{z_{max}} & \text{if } 0 \le z_t^k \le \\ 0 & \text{otherwise} \end{cases}$$

Beam Model

Beam range model as a mixture density

• The four different distributions are mixed by a weighted average

$$p(z_t^k | x_t, m) = \begin{pmatrix} \alpha_{hit} \\ \alpha_{short} \\ \alpha_{max} \\ \alpha_{rand} \end{pmatrix} \cdot \begin{pmatrix} p_{hit}(z_t^k | x_t, m) \\ p_{short}(z_t^k | x_t, m) \\ p_{max}(z_t^k | x_t, m) \\ p_{rand}(z_t^k | x_t, m) \end{pmatrix}$$

 $\alpha_{hit} + \alpha_{short} + \alpha_{max} + \alpha_{rand} = 1$

Algorithm for beam model

1. Algorithm beam_range_finder_model (z_t , x_t , m) : 2. q = 13. for k = 1 to *K* do compute $z_t^{k^*}$ for z_t^k using ray casting 4. $p = \alpha_{hit} \cdot p_{hit}(z_t^k | x_t, m) + \alpha_{short} \cdot p_{max}(z_t^k | x_t, m) + \alpha_{rat}$ 5. 6 $q = q \cdot p$ 7. return *q*

$$p_{short}(z_t^k | x_t, m)$$

and $\cdot p_{rand}(z_t^k | x_t, m)$

Beam Range Model Parameters

- Intrinsic parameters Θ of the beam range model
 - α_{hit} , α_{short} , α_{max} , α_{rand} , λ_{short}
 - Affect the likelihood of any sensor measurement
- Estimation methods
 - Guesstimate the resulting density
 - Learn parameters using a Maximum Likelihood Estimator
 - Hill climbing, gradient descent, genetic algorithms, etc.

Raw sensor data

Sonar sensor data

Fast Robots 2025

Laser range sensor

True range is 300 cm and maximum range is 500 cm

Approximation results with MLE

Fast Robots 2025

-aser range sensor data

Beam model in action

Laser scan projected into a partial map m

Fast Robots 2025

Likelihood $p(z_t | x_t, m)$ for all positions x_t projected into the map. The darker a position, the larger $p(z_t | x_t, m)$

Summary of beam model

- Overconfident
 - Assumes independence between individual measurements
- Models physical causes for measurements
- Implementation involves learning parameters based on real data
- Limitations
 - Different models are needed for every possible scenario (e.g., hit angles for intensity sensors)
 - Raytracing is computationally expensive (but can be pre-processed)
 - Not smooth for small obstacles, at edges, or in cluttered environments

Likelihood fields

Likelihood fields of range finders

- Instead of following along the beam, just check the end point
- Project sensor scan z_t into the map and compute the closest end point
- Probability function is a mixture of
 - A Gaussian distribution with mean at the distance closest to the obstacle
 - A uniform distribution for random measurements
 - A point-mass distribution for max range measurements

Fast Robots 2025

TOUNDER TOUNDE

Measurement noise

Modelled using Gaussians

Measurement noise

- Modelled using Gaussians
- In xy space, this involves finding the nearest obstacle in the map
- object in the map m

Fast Robots 2025

• The probability of a sensor measurement is given by a Gaussian that depends on the Euclidean distance between measurement coordinates and nearest

Likelihood fields of range finders

- Robot pose in the world frame: $x_t = (x, y, \theta)^T$
- Sensor measurement in the robot frame: $(x_{k.sens}, y_{k.sens}, \theta_{k.sens})$
- z_t^k hit/"end" points in the world frame

$$\begin{pmatrix} x_{z_t^k} \\ y_{z_t^k} \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

 $\begin{pmatrix} \theta \\ \theta \end{pmatrix} \begin{pmatrix} x_{z^{k,sens}} \\ y_{z^{k,sens}} \end{pmatrix} + z_t^k \begin{pmatrix} \cos(\theta + \theta^{k,sens}) \\ \sin(\theta + \theta^{k,sens}) \end{pmatrix}$

Likelihood fields for range finders

- Assume independence between individual measurements
- Three types of sources of noise and uncertainty
 - Measurement noise
 - Failures
 - Max range readings are modeled by a pointmass distribution
 - Unexplained random measurements
 - Uniform distribution

Algorithm for likelihood fields

- 1. Algorithm likelihood_field_range_finder_model (z_t, x_t, m) :
- 2. q = 13. **for** k = 1 to *K* do $x_{z_{t}^{k}} = x + x_{z_{k},sens} \cos(\theta) - y_{z_{k},sens} \sin(\theta)$ 4. 5. $y_{z_{t}^{k}} = y + y_{z_{k},sens} \cos(\theta) + x_{z_{k},sens} \sin(\theta)$ $dist = \min_{x',y'} \{ \sqrt{(x_{z_k^t} - x')^2 + (y_{z_k^t} - y')^2} \, | \, \langle x', y' \rangle \text{ occupied in } m \}$ 6. $q = q \cdot \left(z_{hit} \cdot f(dist; 0, \sigma_{hit}) + \frac{z_{rand}}{z_{max}} \right)$
- return q 8.

Fast Robots 2025

$$(\theta) + z_k^t \cos(\theta + \theta_{k,sens})$$

$$(\theta) + z_k^t \sin(\theta + \theta_{k,sens})$$

Transform sensor reading to world frame

Find distance to closest object

Compute likelihood

Likelihood field from sensor data

Sensor data projected into map

Fast Robots 2025

Corresponding likelihood function

San Jose Tech Museum

Occupancy grid map

Fast Robots 2025

Likelihood field

Summary of likelihood fields

- Advantages
 - Highly efficient (computation in 2D instead of 3D)
 - Smooth w.r.t. small changes in robot position
- Limitations
 - Does not model people and other dynamics that might cause short readings
 - Ignores physical properties of beams

Feature-based models

Feature-based models

- Extract features from dense raw measurements
 - For range sensors: lines and corners
 - Often from cameras (edges, corners, distinct patterns, etc.)
- Feature extraction methods
- referred to as landmarks

 - Trilateration
 - Triangulation
 - Interference in the feature space can be more efficient

Fast Robots 2025

Features correspond to distinct physical objects in the real world and are often

Sensors output the range and/or bearing of the landmark w.r.t. the robot frame

Trilateration using range measurements

Trilateration using range measurements

Summary of sensor model

- Robustness comes from explicitly modeling sensor uncertainty
- Measurement likelihood is given by "probabilistically comparing" the actual with the expected measurement
- Often, good models can be found by:
 - Determining a parametric model of noise-free measurements
 - Analyzing sources of noise
 - Adding adequate noise to parameters (mixed density functions)
 - Learning (and verifying) parameters by fitting model to data
- It is extremely important to be aware of the underlying assumptions!

References

1.Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT press, 2005.
2.http://ais.informatik.uni-freiburg.de/teaching/ss10/robotics/slides/07-sensor-models.pdf
3.http://www.cs.cmu.edu/~16831-f14/notes/F12/16831_lecture03_mtaylormshomin.pdf
4.Gaussian Distribution: https://www.asc.ohio-state.edu/gan.1/teaching/spring04/Chapter3.pdf
5.Gaussian Distribution: <u>http://www2.stat.duke.edu/~rcs46/modern_bayes17/lecturesModernBayes17/lecture-3/03-normal-distribution.pdf</u>

