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Class Action Items
• Grades for lab 4 and lab 5 were posted on Wednesday, please get regrade requests in by 

Wednesday April 9th. 

• Lab 7: Kalman Filter, due today or tomorrow at 8am. If you choose to take a slip week, the lab 

is due Tuesday April 8th at 8am or Wednesday April 9th at 8am. Enjoy your spring break!

• Lab 8: Stunts! Due the Tuesday/ Wednesday following spring break. 

• We already have a number of successful flips!

• Notes if you didn’t hear me in Lab: 

• The flip is essentially open loop, so if you want to do that, feel free. Importantly, you have 

to weight the car in the front.

• If you want to get a better estimate of start and end position, you can do PID on 

orientation to make sure that if you don’t flip straight you return to the start line.  

• If you do the drift and you are using the DMA, please read Stephan Wagner’s website 

about FIFO

• Please get some rest over spring break!
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Midterm feedback

• We had 37 students respond out of the 58 enrolled


• Most of the feedback was really positive, thank you!


• General tone of the feedback: class is hard, it is a lot of work, but it is super 
rewarding that we get to work on a real robotic system. Appreciate the 
open hours and the TA support.


• Specific areas for improvement: 


• office hour cancellation


• getting grades back quicker


• lab write ups
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Midterm feedback

• Interesting ideas for future years:


• Lab complexity, evening out workloads week-to-week.


• Rearrange labs


• Super curious to hear your opinions on lab difficulty and workloads, we poll 
you every week. I am learning a lot as we go as well about overall 
engagement and tweaks to the labs. 


• Write ups


• Batch them? Only write one long write up after each subsection?


• Time of due dates


• Anything else?
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You are almost done!
• Lab 1-4: implement robot

• Lab 5-8: control and stunts

• Lab 9-12 localization and mapping


• Lab 9: mapping

• Flipped classroom April 10th: simulator

• Lab 10: localization simulation (S/U)

• Lab 11: localization on the real robot

• Lab 12: navigation


• Lectures

• Bayes filter recap/ SLAM

• Ethics

• Guest Lectures: ASML, one TBD

• Trivia and ECE Robotics Day
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Bayes Filter
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1. Algorithm Bayes_Filter  

2. for all  do 

3.  

4.  

5. end for 

6. return  

(bel(xt−1), ut, zt) :

xt

bel(xt) = Σxt−1
p(xt |ut, xt−1) bel(xt−1)

bel(xt) = η p(zt |xt) bel(xt)

bel(xt)

Transition probability/ action model

Measurement probability/ sensor model

(Prediction step)

(Update/measurement step)

Lecture 17 
• Odometry Model  
• Velocity Model



Sensor Models p(zt |xt)
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p(zt |xt, m)



• Contact Sensors: bumpers


• Internal/ Proprioceptive Sensors: 

• Accelerometers (spring-mounted masses), 

• Gyroscopes (spinning mass, laser light),

• Compasses, inclinometers (magnetic field, gravity) 

• Range Sensors:

• Infrared (intensity)

• Sonar (time of flight)

• Radar (phase and frequency)

• Laser range finders (triangulation, ToF, phase)


• Visual sensors: Cameras


• Satellite-based sensors: GPS

Sensors for Mobile Robots
Fast Robots 2025



• Probabilistic robotics explicitly models the noise in exteroceptive sensor 
measurements


• What about proprioceptive sensors?


• Where does the noise come from?

Sensor Model
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• Readings > true distance 
• Surface material

• Angle between surface normal and direction of 

sensor cone

• Width of the sensor cone of measurement

• Sensitivity of the sensor cone


• Readings < true distance 
• Crosstalk between different sensors

• Unmodeled objects in the proximity of the 

robot, such as people

Range Sensor Inaccuracies “noise”
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• Perfect sensor models…

• 

• … practically impossible

• ….computationally intractable


• Practical sensor models…

• 


• Three common sensor models

• Beam model

• Likelihood model

• Feature-based model

z = f(x)

p(z |x)

Probabilistic Sensor Model
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Until now our sensor models have been 
simple

• 

•  for a small state space
p(z = correct)
p(z |x)
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Beam Model
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• Let there be  individual measurement values within a measurement 


• Individual measurements are independent given the robot state


• Can you think of violations to that assumption?


• People, errors in the map model , approximations in the posterior, etc.


• But it makes computation much more tractable

K zt

m

Beam model of range finders
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zt = {z1
t , z2

t , …, zK
t }

p(zt, xt, m) =
K

∏
k=1

p(zk
t |xt, m) Sensor measurements are caused  

by real world objects



Range measurements
Typical measurement errors
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Range measurements
Typical measurement errors

• Correct range measurements 

• Beams reflected by obstacles


• Unexpected objects 

• Beams reflected by persons


• Crosstalk


• Failures 

• Random Measurements
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Correct range measurements

• Reading: 


• True value: 


• In a location-based map,  is usually 
estimated by ray casting


• Measurement noise


• Narrow Gaussian  with mean  
and standard deviation 

zk
t

zk*
t

zk*
t

phit zk*
t

σhit
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ztk* zmax0

phit(zk
t |xt, m) = {ηf(zk

t , zk*
t , σhit) if 0 ≤ zk

t ≤ zmax

0 otherwise



Unexpected objects
• Real world is dynamic


• Objects not contained in the map can 
cause shorter readings


• Treat them as part of the state vector and 
estimate their location


• Treat them as sensor noise


• The likelihood of sensing unexpected objects 
decreases with range


• Model as exponential distribution pshort
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pshort(zk
t |xt, m) = {ηλshorte−λshortzk

t if 0 ≤ zk
t ≤ zk*

t

0 otherwise

ztk* zmax0

R

p(z = o1 |x, m) = 1
p(z = o2 |x, m) = 1/4

p(z = o3 |x, m) = 1/8
p → 1/2n



Failures
• Obstacles might be missed altogether 

• The result is a max-range measurement 


• Model as a point-mass distribution 

zmax

pmax
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pmax(zk
t |xt, m) = I(z = zmax) = {1 if z = zmax

0 otherwise

ztk* zmax0



Random measurements
• Range finders can occasionally produce 

entirely inexplicable measurements


• Modelled as a uniform distribution  
over the measurement range

prand
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prand(zk
t |xt, m) = {

1
zmax

if 0 ≤ zk
t ≤ zmax

0 otherwise

ztk* zmax0



Beam Model
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ztk* zmax0

ztk* zmax0

ztk* zmax0

ztk* zmax0



Beam range model as a mixture density
• The four different distributions are mixed by a weighted average
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p(zk
t |xt, m) =

αhit
αshort
αmax
αrand

⋅

phit(zk
t |xt, m)

pshort(zk
t |xt, m)

pmax(zk
t |xt, m)

prand(zk
t |xt, m)

αhit + αshort + αmax + αrand = 1
ztk* zmax0



Algorithm for beam model
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1. Algorithm beam_range_finder_model  

2.  

3. for   

4. compute  for  using ray casting 

5.   

6.  

7. return  

(zt, xt, m) :

q = 1

k = 1 to K do

zk*
t zk

t

p = αhit ⋅ phit(zk
t |xt, m) + αshort ⋅ pshort(zk

t |xt, m)
+αmax ⋅ pmax(zk

t |xt, m) + αrand ⋅ prand(zk
t |xt, m)

q = q ⋅ p

q



Beam Range Model
Parameters

• Intrinsic parameters  of the beam range model


• 


• Affect the likelihood of any sensor measurement


• Estimation methods


• Guesstimate the resulting density


• Learn parameters using a Maximum Likelihood Estimator


• Hill climbing, gradient descent, genetic algorithms, etc.

Θ

αhit, αshort, αmax, αrand, λshort
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Raw sensor data
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Sonar sensor data Laser range sensor

True range is 300 cm and maximum range is 500 cm



Approximation results with MLE
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Beam model in action
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Laser scan projected into a  
partial map m

Likelihood  for all positions  projected 
into the map. The darker a position, the larger  

p(zt |xt, m) xt

p(zt |xt, m)



Summary of beam model
• Overconfident 

• Assumes independence between individual measurements


• Models physical causes for measurements


• Implementation involves learning parameters based on real data


• Limitations 

• Different models are needed for every possible scenario (e.g., hit angles for 
intensity sensors)


• Raytracing is computationally expensive (but can be pre-processed)


• Not smooth for small obstacles, at edges, or in cluttered environments
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Likelihood fields

Fast Robots 2025



Likelihood fields of range finders
• Instead of following along the beam, just check the end point


• Project sensor scan  into the map and compute the closest end point


• Probability function is a mixture of


• A Gaussian distribution with mean at the distance closest to the obstacle


• A uniform distribution for random measurements


• A point-mass distribution for max range measurements

zt
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Measurement noise
• Modelled using Gaussians

Fast Robots 2025

phit(zt
k)

o1 o2 o3 zmax



Measurement noise
• Modelled using Gaussians


• In xy space, this involves finding the nearest obstacle in the map


• The probability of a sensor measurement is given by a Gaussian that depends 
on the Euclidean distance between measurement coordinates and nearest 
object in the map m
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o1 o2 o3 zmax

 𝑝h𝑖𝑡(𝑧
𝑡
𝑘)



Likelihood fields of range finders

• Robot pose in the world frame: 


• Sensor measurement in the robot frame: 


•  hit/“end” points in the world frame

xt = (x, y, θ)T

(xk,sens, yk,sens, θk,sens)

zk
t
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(xzk
t

yzk
t ) = (x

y) + (cos(θ) −sin(θ)
sin(θ) cos(θ) ) (xzk,sens

yzk,sens) + zk
t (cos(θ + θk,sens)

sin(θ + θk,sens))



Likelihood fields for range finders
• Assume independence between individual 

measurements


• Three types of sources of noise and uncertainty 

• Measurement noise


• Failures


• Max range readings are modeled by a point-
mass distribution


• Unexplained random measurements


• Uniform distribution
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Algorithm for likelihood fields
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1. Algorithm likelihood_field_range_finder_model  

2.  

3. for   

4.  

5.  

6.  

7.  

8. return  

(zt, xt, m) :

q = 1

k = 1 to K do

xzk
t

= x + xzk,sens cos(θ) − yzk,sens sin(θ) + zt
k cos(θ + θk,sens)

yzk
t

= y + yzk,sens cos(θ) + xzk,sens sin(θ) + zt
k sin(θ + θk,sens)

dist = min
x′ ,y′ 

{ (xzt
k
− x′ )2 + (yzt

k
− y′ )2 |⟨x′ , y′ ⟩ occupied in m}

q = q ⋅ (zhit ⋅ f(dist; 0, σhit) +
zrand

zmax )
q

Transform 
sensor reading 
to world frame

Find distance to 
closest object

Compute 
likelihood

Return product of likelihoods



Likelihood field from sensor data
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Sensor data projected into map Corresponding likelihood function



San Jose Tech Museum
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Occupancy grid map Likelihood field



Summary of likelihood fields
• Advantages 

• Highly efficient (computation in 2D instead of 3D)


• Smooth w.r.t. small changes in robot position


• Limitations 

• Does not model people and other dynamics that might cause short 
readings


• Ignores physical properties of beams
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Feature-based models
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Feature-based models
• Extract features from dense raw measurements 
• For range sensors: lines and corners

• Often from cameras (edges, corners, distinct patterns, etc.)


• Feature extraction methods


• Features correspond to distinct physical objects in the real world and are often 
referred to as landmarks

• Sensors output the range and/or bearing of the landmark w.r.t. the robot frame

• Trilateration

• Triangulation

• Interference in the feature space can be more efficient
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Trilateration using range measurements
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Trilateration using range measurements
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Summary of sensor model
• Robustness comes from explicitly modeling sensor uncertainty


• Measurement likelihood is given by “probabilistically comparing” the actual with 
the expected measurement 


• Often, good models can be found by:


• Determining a parametric model of noise-free measurements


• Analyzing sources of noise


• Adding adequate noise to parameters (mixed density functions)


• Learning (and verifying) parameters by fitting model to data


• It is extremely important to be aware of the underlying assumptions!
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