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Class Action Items

• Lab 3 is due Feb 25-26, if you need to use a slip week, please send us a 
private message on Ed. You can do this up until the deadline.


• Lab 4 starts next week, if you want to get a head start during open hours, we 
will discuss the lab in class today and the website is already posted.


• Lab 4 has another soldering component, so think about how you want to 
connect things ahead of time!


• At the end of Lab 4, you will have a fully-integrated RC car.


• Good example from last year: https://nila-n.github.io/Lab4.html


• Please respond to the Ed Discussion polls for workload!
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Lab 4 Open loop control
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https://nila-n.github.io/Lab4.html



Brushed DC motor controllers
Parallel-coupled motor controller

https://www.pololu.com/product-info-merged/2130
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Fast decay: “coasting”


Slow decay: “braking”
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Linear Systems

• Linear systems review


• Eigenvectors and eigenvalues


• Stability


• Discrete time systems


• Linearizing nonlinear systems


• Controllability


• Observability
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·x = Ax+Bu

These should look familiar from:


• MATH2940 Linear Algebra


• ECE3250 Signals and Systems


• ECE5210 Theory of Linear Systems


• MAE3260 System Dynamics


• and many others…Based on “Control Bootcamp”, Steve Brunton, UW

https://www.youtube.com/watch?v=Pi7l8mMjYVE 

https://www.youtube.com/watch?v=Pi7l8mMjYVE


Linear Systems

• Linear systems review


• Eigenvectors and eigenvalues


• Stability


• Discrete time systems


• Linearizing nonlinear systems


• Controllability


• Observability
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·x = Ax+Bu

• 1st order system:


• 2nd order system:

[
·θ
··θ] = [0 1

0 −c
I ] [θ

·θ] + [
0
1
I ] u

[
·θ
··θ] = [ 0 1

const −c
I ] [θ

·θ] + [
0
1
I ] u
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·x = Ax+Bu

·x = cos(θ)v
·y = sin(θ)v
·θ = ω

y

x

vω

θ

·x
·y
·θ

=
cos(θ) 0
sin(θ) 0

0 1
[v
ω]
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·x = Ax+Bu

• 1st order system:


• 2nd order system:

[
·θ
··θ] = [0 1

0 −c
I ] [θ

·θ] + [
0
1
I ] u

[
·θ
··θ] = [ 0 1

const −c
I ] [θ

·θ] + [
0
1
I ] u



Linear Systems

• Linear system


• Basic solution


• Taylor series expansion
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·x = Ax x ∈ ℝn A ∈ ℝn×n

x(t) = eAtx(0)

eAt = I + At +
A2t2

2!
+

A3t3

3!
+ . . .

ex = 1 + x +
x2

2!
+

x3

3!
+ . . .

dx
dt

= kx ↔
dx
x

= kdt ↔ ln( |x | ) = kt + c

|x | = ekt + ec ↔ x = ± cekt
Aside: 



Linear Systems

• Linear system


• Basic solution


• Map the system to eigenvector coordinates to make computation easier


• Apply a linear transform: 


• Substitute into the original equation: 


• Pick the matrix,  , such that  becomes simpler than 

z = Tx

T−1 ·z = AT−1z

T TAT−1 A
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·x = Ax

x(t) = eAtx(0)

↔ x = T−1z

↔ z = TAT−1z



Eigenvectors and Eigenvalues
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Eigenvectors and Eigenvalues

• Eigenvectors, , of 


• Matrix of eigenvectors, 


• Diagonal matrix of eigenvalues, 

ξ A
T

D
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Aξ = λξ

T = [ξ1 ξ2 . . . ξn]

D =

λ1

λ2
⋱

λn AT = TD
[2 3

2 1] [3
2] = [12

8 ] = 4 [3
2]

ξ1 = [3
2]

A = [2 3
2 1]

λ1 = 4

ξ1

Aξ1



z-coordinates
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MATLAB has a handy function: [T, D] = eig(A);

By mapping our system to eigenvector coordinates,  
the dynamics become diagonal (very simple!)

x = Tz
·x = T ·z = Ax

T ·z = ATz

·z = T−1ATz

AT = TD

·x = Ax

x(t) = eAtx(0)

eAt = I + At +
A2t2

2!
+

A3t3

3!
+ . . .

x =
x1
⋮
xn

↔ T−1AT = D ·z = Dz



z-coordinates
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Much simpler to think about the system in eigen coordinates!

d
dt

z1
z2
⋮
zn

=

λ1

λ2
⋱

λn

z1
z2
⋮
zn

z(t) = eDtz(0) =

eλ1t

eλ2t

⋱
eλnt

z0

z1(t) = eλ1tz1(0) zn(t) = eλntzn(0)…

·x = Ax = T ·z
x(t) = eAtx(0)

·z = Dz

T−1AT = D



Let’s get back to x-coordinates
Fast Robots 2025

An = TDnT−1

x(t) = eAtx(0)

eAt = I + At +
A2t2

2!
+

A3t3

3!
+ . . .

eAt = eTDT−1t

eAt = I + TDT−1t + (TDT−1TDT−1) t2

2!
+ …

I

(TD2T−1)

·x = Ax = T ·z
x(t) = eAtx(0)

·z = Dz

T−1AT = D



Let’s get back to x-coordinates
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An = TDnT−1

x(t) = eAtx(0)

eAt = I + At +
A2t2

2!
+

A3t3

3!
+ . . .

eAt = eTDT−1t

eAt = I + TDT−1t + (TDT−1TDT−1) t2

2!
+ …

eAt = T [I + Dt +
D2t2

2!
+ … +

Dntn

n! ] T−1 = TeDtT−1

Easy to compute!

·x = Ax = T ·z
x(t) = eAtx(0)

·z = Dz

T−1AT = D



Let’s get back to x-coordinates
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·x = Ax = T ·z
x(t) = eAtx(0)

x = Tz
AD = TD

eAt = TeDtT−1
z(0)

z(t)

x(t)

x(t) = TeDtT−1x(0)

System solution in physical coordinates



Eigenvalues and Stability
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x(t) = TeDtT−1x(0)

Stability (continuous time)
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·x = Ax D =

λ1

λ2
⋱

λn

eDt =

eλ1t

eλ2t

⋱
eλnt

Python: eigenvalues, eigenvectors = np.linalg.eig(A)

𝑥

𝑡

• If even one of the  goes to , all go to 


• Complex eigenvalues: 


• Euler’s formula: 

eλt ∞ ∞

λ = a + ib

eλt = eat(cos(bt) + i sin(bt))



±

x(t) = TeDtT−1x(0)

Stability (continuous time)
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·x = Ax D =

λ1

λ2
⋱

λn

eDt =

eλ1t

eλ2t

⋱
eλnt

Python: eigenvalues, eigenvectors = np.linalg.eig(A)

𝑥

𝑡

• If even one of the  goes to , all go to 


• Complex eigenvalues: 


• Euler’s formula: 

eλt ∞ ∞

λ = a + ib

eλt = eat(cos(bt) + i sin(bt))

System is stable iff real parts of all eigenvalues are <0!

±

±
= 1

a>0

a<0



x(t) = TeDtT−1x(0)

Stability (continuous time)
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·x = Ax D =

λ1

λ2
⋱

λn

eDt =

eλ1t

eλ2t

⋱
eλnt

𝑥

𝑡
System is stable iff real parts of all eigenvalues are <0!

a>0

a<0

λ = a + ib
Stable

Unstable

Re

Im𝜆 𝜖 ℂ

x

xx=[𝜃
𝜃̇]



Discrete Time Systems
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Stability (discrete time)
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·x = Ax

D =

λ1

λ2
⋱

λn

Stable

Unstable

Re

Im𝜆 𝜖 ℂ

x

x

Ã = eAΔt

x1 = Ãx0

x2 = Ãx1 = Ã2x0

x3 = Ã3x0

xn = Ãnx0

⋮

Ã = T̃D̃T̃−1

Ã2 = T̃D̃2T̃−1
λ̃
λ̃2

, where  x(k + 1) = Ãx(k) x(k) = x(kΔt)
How does  relate to ?Ã A

Ã3 = T̃D̃3T̃−1

Ãn = T̃D̃nT̃−1
⋮

λ̃3

λ̃n
⋮



Stability (discrete time)
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·x = Ax

D =

λ1

λ2
⋱

λn

Stable

Unstable

Re

Im𝜆 𝜖 ℂ

x

x

Ã = eAΔt

xn = Ãnx0 Ãn = T̃D̃nT̃−1 λ̃n

λ̃ = Reiθ

λ̃n = Rneinθ

Re

Im

R
θ

, where  x(k + 1) = Ãx(k) x(k) = x(kΔt)
How does  relate to ?Ã A



Stability (discrete time)
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·x = Ax

D =

λ1

λ2
⋱

λn

Stable

Unstable

Re

Im𝜆 𝜖 ℂ

x

x

Ã = eAΔt

xn = Ãnx0 Ãn = T̃D̃nT̃−1 λ̃n

λ̃ = Reiθ

λ̃n = Rneinθ

Re

Im

R
θ

, where  x(k + 1) = Ãx(k) x(k) = x(kΔt)
How does  relate to ?Ã A



Stability (discrete time)
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·x = Ax

D =

λ1

λ2
⋱

λn

Stable

Unstable

Re

Im𝜆 𝜖 ℂ

x

x

Ã = eAΔt

xn = Ãnx0 Ãn = T̃D̃nT̃−1 λ̃n

λ̃ = Reiθ

λ̃n = Rneiθ

Re

Im

R
θ

, where  x(k + 1) = Ãx(k) x(k) = x(kΔt)
How does  relate to ?Ã A

𝑒𝐴Δ𝑡



• We often work in discrete time


• Stability and quality of controllers 
depend on sampling rate

Stability (discrete time)
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·x = Ax

D =

λ1

λ2
⋱

λn

Stable

Unstable

Re

Im𝜆 𝜖 ℂ

x

x

Re

Im

R
θ

𝑒𝐴Δ𝑡

x(k + 1) = Ãx(k)
Ã = eAΔt

λ̃n = Rneiθ



Stability (discrete time)
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·x = Ax x(k + 1) = Ãx(k)

Unstable

(Positive real part, R>1)



Stability (discrete time)
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·x = Ax x(k + 1) = Ãx(k)

Critically stable

(Zero real part, R = 1)



Stability (discrete time)
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·x = Ax x(k + 1) = Ãx(k)

Stable

(Negative real part, R<1)



Linearizing Nonlinear Systems
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Basic steps to linearize nonlinear systems

• Find some fixed points

•  


• Linearize about them


•

x̄ st f(x̄) = 0

Df
Dx x̄

= [ δfi
δxj ]
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·x = f(x)

Df
Dx

=

δf1
δx1

δf1
δx2

δf2
δx1

δf2
δx2

Df
Dx

= [ x2 x1

2x1 2x2]

·x1 = f1(x1, x2) = x1x2

·x2 = f2(x1, x2) = x2
1 + x2

2

Example:

·x = Ax

x=[𝜃
𝜃̇] Evaluate at x̄

"Jacobian”



·x1 = f1(x1, x2) = x1x2

·x2 = f2(x1, x2) = x2
1 + x2

2

Example:

Evaluate at x̄

Basic steps to linearize nonlinear systems

• Find some fixed points

•  


• Linearize about them


• 


• If you zoom in on , your system 
will look linear!

x̄ st f(x̄) = 0

Df
Dx x̄

= [ δfi
δxj ]

x̄
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·x = f(x) ·x = Ax

·x1 = f1(x1, x2) = x1x2

·x2 = f2(x1, x2) = x2
1 + x2

2

Df
Dx

=

δf1
δx1

δf1
δx2

δf2
δx1

δf2
δx2

Df
Dx

= [ x2 x1

2x1 2x2]

Example:

x=[𝜃
𝜃̇]



Basic steps to linearize nonlinear systems

• Find some fixed points

•  


• Linearize about them


• 


• If you zoom in on , your system 
will look linear!

x̄ st f(x̄) = 0

Df
Dx x̄

= [ δfi
δxj ]

x̄
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·x = f(x) ·x = Ax

·x = f(x)
·x = f(x̄) +

Df
Dx x̄

(x − x̄) +
D2f
D2x x̄

(x − x̄)2 +
D3f
D3x x̄

(x − x̄)3 + …

Vector field of 
the dynamics

x̄
Δx

0
<<1



Basic steps to linearize nonlinear systems

• Find some fixed points

•  


• Linearize about them


• 


• If you zoom in on , your system 
will look linear!


• Good control will keep you near 
the fixed point, where the model 
is valid!

x̄ st f(x̄) = 0

Df
Dx x̄

= [ δfi
δxj ]

x̄
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·x = f(x) ·x = Ax

·x = f(x)
·x = f(x̄) +

Df
Dx x̄

(x − x̄) +
D2f
D2x x̄

(x − x̄)2 +
D3f
D3x x̄

(x − x̄)3 + …

Vector field of 
the dynamics

x̄
Δx

0
<<1

Δ ·x =
Df
Dx x̄

(Δx) Δ ·x = AΔx



Review
• Linear system:  


• Solution: 


• Eigenvectors: 


•
Eigenvalues: 


• Linear Transform: 


• Solution: 


• Mapping from x to z to x: 


• Stability in continuous time: , stable iff 

·x = Ax

x(t) = eAtx(0)

T = [ξ1 ξ2 . . . ξn]

D =

λ1

λ2
⋱

λn

AT = TD

eAt = eTDT−1t

x(t) = TeDtT−1x(0)

λ = a + ib a < 0
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• Discrete time: , where 


• Stability in discrete time: , stable iff 


• Nonlinear systems: 


• Linearization: 

x(k + 1) = Ãx(k) Ã = eAΔt

λ̃n = Rneinθ R < 1

·x = f(x)

Df
Dx x̄


