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Class Action Items

• Lab 9: mapping starts today! The world is setup in the front room of the lab.


• If you still need to work on Lab 8, there is space in the hallway


• Remember there are extra points for best stunt and best blooper!


• We will send a google poll next week after extension period ends.


• Please install the simulator before class on Thursday!


• Next lecture is a flipped classroom, please bring your laptops! We will help 
students debug their simulator downloads.


• We will also help if you have questions about the exercises.
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Lab 9: Mapping
• Objective: generate a map using your robot and ToF 

sensor (range finding)

• Strategy: Place your robot in (at least) 4 marked positions 

on the floor and spin while taking measurements.

• Control:

• Open loop

• PID on orientation (DMP or integrated gyro)

• PID on angular velocity (gyro or differentiated DMP)


• Sanity check: polar plot, repeated polar plots

• Scatter plot: Use transformation matrices

• Convert to a line-based map

Images from Mikayla Lahr (2024) and Aryaa Pai (2022)
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https://mikaylalahr.github.io/FastRobotsLabReports/startbootstrap-resume-master/dist/index.html#Lab%209
https://pages.github.coecis.cornell.edu/avp34/ECE4600-webpage/lab9.html


Summary of Bayes Filter
• The robot performs a series of alternating actions/ measurements


• Given:


• Sensor model: 


• Action model: 


• Initial conditions: 


• Compute:


• State of dynamic system


• Posterior of the state (belief): 

p(zt |xt)

p(xt |ut, xt−1)

p(x0)

bel(xt) = p(xt | u1, z1, …, ut, zt)

1. Algorithm Bayes_Filter  

2. for all  do 

3.  

4.  

5. end for 

6. return  

(bel(xt−1), ut, zt) :

xt

bel(xt) = Σxt−1
p(xt |ut, xt−1) bel(xt−1)

bel(xt) = η p(zt |xt) bel(xt)

bel(xt)
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Example 1

• So, what do we need to run the Bayes Filter?


• Motion model


•



• Measurement model


•

p(x + 1 |x, u = + 1) = 0.5
p(x |x, u = + 1) = 0.5

p(x − 1 |x, u = − 1) = 0.5
p(x |x, u = − 1) = 0.5

p(Z = door | X = 5) = 0.5
p(Z = door | X = 4) = 0.25
p(Z = door | X = 3) = 0
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At t = 0, no information

State 0 1 2 3 4 5

p(x0)
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State 0 1 2 3 4 5

Do we have to do the prediction step?

Do the update step!

At t = 0, no information
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At t = 1, U1 = NOP, Z1 = door
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State 0 1 2 3 4 5

State 0 1 2 3 4 5
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State 0 1 2 3 4 5

At t = 1, U1 = NOP, Z1 = door

p(x1)
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State 0 1 2 3 4 5

At t = 2, U2 = − 1

p(x2)
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State 0 1 2 3 4 5

At t = 1, U1 = NOP, Z1 = door
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State 0 1 2 3 4 5

At t = 2, U2 = − 1

p(x2)
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State 0 1 2 3 4 5

At t = 2, U2 = − 1

p(x2)
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At t = 2, U2 = − 1, Z2 = door
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At t = 0, we are absolutely certain the robot is at state X0 = 0

State 0 1 2 3 4 5

p(x0)
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State 0 1 2 3 4 5

p(x0) 1 0 0

State 0 1 2 3 4 5

At t = 1, U1 = NOP, Z1 = door

p(x1)

0 0 0

At t = 0, we are absolutely certain the robot is at state X0 = 0
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State 0 1 2 3 4 5

State 0 1 2 3 4 5

At t = 1, U1 = NOP, Z1 = door

p(x0) 1 0 0

p(x1)

0 0 0

0 0 0 0 0 0

At t = 0, we are absolutely certain the robot is at state X0 = 0
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State 0 1 2 3 4 5

State 0 1 2 3 4 5

At t = 1, U1 = NOP, Z1 = door
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State 0 1 2 3 4 5

State 0 1 2 3 4 5

At t = 1, U1 = NOP, Z1 = door
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Always believe, even if just a little, in the improbable!
(deterministic approaches are fragile!)
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adapted from Prof. Fred Martin at Umass
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Example 2
Bayes with beans
• World


• 1D continuous, 7 states


• … door at state 5


• Motion model


• 80% correct, 20% fail


• Sensor model


• 90% correct, 10% fail


• Initial belief


• Take an action: +1


• Take a sensor reading: door!
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Example 3

• 8x10 discrete world


• Known map with obstacles and walls


• Robot state


• Location in the map (no orientation)


• Initial state is (0,0)

Fast Robots 2025

 is the set of possible locations


 is one location
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Example 3
Transition model

• No matter what I tell my robot to do, it makes 
a random move or stays in place!
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Example 3
Transition model

• No matter what I tell my robot to do, it makes 
a random move or stays in place!


• Transition matrix, A


• Probability to move from state j  to state i
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Example 3
Practical implementation
• Set up the world


• Compute the transition matrix, A


• Take actions

• Cumulative distribution

• find(Mtri*A*s >= rand(),1,’first’); 
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Example 3
Prediction step
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1. Prediction step  

2. for all  do 

3.  

4. end for

(bel(xt−1), ut) :

xt

bel(xt) = Σxt−1
p(xt |ut, xt−1) bel(xt−1)

1. Matrix implementation 

2.  

where A is the transition matrix (80x80) and bel is the 
probability distribution over all states (80x1)

bel = A ⋅ belt−1



Example 3
Prediction step
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bel0 bel1 bel2

bel3 . . . bel10 . . . bel100



Example 3
Observations • The robot may not know 

where it is, but it does have a 
physical state


• It will have observations tied 
to that state

Fast Robots 2025

bel0 bel1 bel2

bel3 . . . bel10 . . . bel100



Example 3
Observation model
• In every time step, we sense each of the four 

neighboring cells (N, E, S, W)


• In z, each reading is independent and correct 
with 90% probability
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Example 3
Observation model
• In every time step, we sense each of the four 

neighboring cells (N, E, S, W)


• In z, each reading is independent and correct 
with 90% probability
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p(z |X)

p(no walls |x) = 0.1 ⋅ 0.9 ⋅ 0.9 ⋅ 0.9
p(N |x) = 0.9 ⋅ 0.9 ⋅ 0.9 ⋅ 0.9
p(W |x) = 0.1 ⋅ 0.9 ⋅ 0.9 ⋅ 0.1
p(S |x) = 0.1 ⋅ 0.9 ⋅ 0.1 ⋅ 0.9
p(E |x) = 0.1 ⋅ 0.1 ⋅ 0.9 ⋅ 0.9
…

p(NW |x) = 0.9 ⋅ 0.9 ⋅ 0.9 ⋅ 0.1

Highest likelihood

How many combinations are there  
per state?

24



Example 3
Observation model
• In every time step, we sense each of the four 

neighboring cells (N, E, S, W)


• In z, each reading is independent and correct 
with 90% probability
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1. Algorithm Bayes_Filter  

2. for all  do 

3.  

4.  

5. end for 

6. return  

(bel(xt−1), ut, zt) :

xt

bel(xt) = Σxt−1
p(xt |ut, xt−1) bel(xt−1)

bel(xt) = η p(zt |xt) bel(xt)

bel(xt)

1. Likelihood of Observations, : 

2. for all  do 

3.            

4. end for 

where  is a vector (80x1)

pzX

xt

pzX(xt) = 0.94−Σ|zt−z′ xt| 0.1Σ|zt−z′ xt|

pzX

• If all readings are correct:


• 


• 

• If all readings are incorrect:


• 


•

Σ |zt − z′ xt | = 0
pz(xt) = 0.6561

Σ |zt − z′ xt | = 4
pz(xt) = 0.0001



Example 3
Observation model
• In every time step, we sense each of the four 

neighboring cells (N, E, S, W)


• In z, each reading is independent and correct 
with 90% probability
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1. Algorithm Bayes_Filter  

2. for all  do 

3.  

4.  

5. end for 

6. return  

(bel(xt−1), ut, zt) :

xt

bel(xt) = Σxt−1
p(xt |ut, xt−1) bel(xt−1)

bel(xt) = η p(zt |xt) bel(xt)

bel(xt)

1. Algorithm Bayes_Filter  

2. for all  do 

3.  

4.  

5. end for 

6. return  

(bel(xt−1), ut, zt) :

xt

bel(xt) = Σxt−1
p(xt |ut, xt−1) bel(xt−1)

bel(xt) = η p(zt |xt) bel(xt)

bel(xt)

1. Compute new belief: 

2.  

where  is a vector (80x1) 
and  is a vector (80x1)

belt =
pzXbel

Σ(pzXbel)

bel
pzX
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1. Algorithm Bayes_Filter  

2.  

3. for all  do  

4.  

5. end for 

6.  

7. return  

(belt−1, zt) :

bel = A belt−1

xt

pzX(xt) = 0.94−Σ|zt−z′ xt| 0.1Σ|zt−z′ xt|

belt =
pzX bel

Σ(pzX bel)

belt

Only do this for states with a belief > threshold

Cache and look up



Example 3

• Improved transition model


• Deliberately move in directions that give you more information
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No clue!

Sensed W wall Sensed N wall

In two steps, we  
homed in on where 
we are!

Can we do better?



Today’s examples
• Example 1: robot in the 1D world


• Important to have some belief in  
all states


• Example 2: Bayes with beans


• Important to normalize


• Example 3: (x,y) robot in a grid world


• Important to improve computational efficiency


• Matrices


• Pre-cache

1. Algorithm Bayes_Filter  

2. for all  do 

3.  

4.  

5. end for 

6. return  

(bel(xt−1), ut, zt) :

xt

bel(xt) = Σxt−1
p(xt |ut, xt−1) bel(xt−1)

bel(xt) = η p(zt |xt) bel(xt)

bel(xt)

Fast Robots 2025



1. Algorithm Bayes_Filter  

2. for all  do 

3.  

4.  

5. end for 

6. return  

(bel(xt−1), ut, zt) :

xt

bel(xt) = Σxt−1
p(xt |ut, xt−1) bel(xt−1)

bel(xt) = η p(zt |xt) bel(xt)

bel(xt)

Summary of Bayes Filter
• Use temporal consistency between observations that are poor estimates 

individually


• Localization can work with…


• completely random motion


• noisy sensors


• Remember to..


• remain probabilistic


• normalize


• improve efficiency
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