Bayes Filter II Fast Robots, ECE4160/5160, MAE 4190/5190

E. Farrell Helbling, 4/8/25

Class Action Items

- Lab 9: mapping starts today! The world is setup in the front room of the lab.
 - If you still need to work on Lab 8, there is space in the hallway
 - Remember there are extra points for best stunt and best blooper!
 - We will send a google poll next week after extension period ends.
- Please install the simulator before class on Thursday!
 - Next lecture is a flipped classroom, please bring your laptops! We will help students debug their simulator downloads.
 - We will also help if you have questions about the exercises.

Lab 9: Mapping

- Objective: generate a map using your robot and ToF sensor (range finding)
- Strategy: Place your robot in (at least) 4 marked positions on the floor and spin while taking measurements.
- Control:
 - Open loop
 - PID on orientation (DMP or integrated gyro)
 - PID on angular velocity (gyro or differentiated DMP)
- Sanity check: polar plot, repeated polar plots
- Scatter plot: Use transformation matrices
- Convert to a line-based map

Images from Mikayla Lahr (2024) and Aryaa Pai (2022)

Summary of Bayes Filter

- The robot performs a series of alternating actions/ measurements
- Given:
 - Sensor model: $p(z_t | x_t)$
 - Action model: $p(x_t | u_t, x_{t-1})$
 - Initial conditions: $p(x_0)$
- Compute:
 - State of dynamic system
 - Posterior of the state (belief): $bel(x_t)$

1.	Algorithm Bayes_Filter (<i>bel</i> (x_{t-1}), u_t , z_t) :
2.	for all x_t do
3.	$\overline{bel}(x_t) = \sum_{x_{t-1}} p(x_t u_t, x_{t-1}) \ bel(x_{t-1})$
4.	$bel(x_t) = \eta p(z_t x_t) \overline{bel}(x_t)$
5.	end for
6.	return $bel(x_t)$

$$p(x_t \mid u_1, z_1, ..., u_t, z_t)$$

- So, what do we need to run the Bayes Filter?
- Motion model

$$p(x + 1 | x, u = +1) = 0.5$$
$$p(x | x, u = +1) = 0.5$$
$$p(x - 1 | x, u = -1) = 0.5$$

- p(x | x, u = -1) = 0.5
- Measurement model

$$p(Z = \text{door} \mid X = 5) = 0.5$$

$$p(Z = \text{door} \mid X = 4) = 0.25$$

$$p(Z = \text{door} \mid X = 3) = 0$$

At t = 0, no information

State	0	1	2	3	4	5
$p(x_0)$						

At t = 0, no information

State	0	-	2	3	4	5
$p(x_0)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

At t = 1, $U_1 = \text{NOP}$, $Z_1 = \text{door}$

State	0	1	2	3	4	5
$p(x_1)$						

Fast Robots 2025

Do we have to do the prediction step? Do the update step!

At t = 0, no information

State	0	1	2	3	4	5
$p(x_0)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	1 6

At t = 1, $U_1 = \text{NOP}$, $Z_1 = \text{door}$

State	0	1	2	3	4	5
$p(x_1)$	0	0	0	0	$\frac{\frac{1}{6} \cdot \frac{1}{4}}{\frac{1}{6} \cdot \frac{1}{4} + \frac{1}{6} \cdot \frac{1}{2}}$	$\frac{\frac{1}{6} \cdot \frac{1}{2}}{\frac{1}{6} \cdot \frac{1}{4} + \frac{1}{6} \cdot \frac{1}{6}}$

At t = 1, $U_1 = NOP$, $Z_1 = door$

State	0	1	2	3	4	5
$p(x_1)$	0	0	0	0	$\frac{1}{3}$	$\frac{2}{3}$

At t = 2, $U_2 = -1$

State	0	1	2	3	4	5
$p(x_2)$						

At t = 1, $U_1 = NOP$, $Z_1 = door$

State	0	1	2	3	4	5
$p(x_1)$	0	0	0	0	$\frac{1}{3}$	$\frac{2}{3}$

At t = 2, $U_2 = -1$

State	0	1	2	3	4	5
$p(x_2)$	0	0	0	$\frac{1}{3} \cdot \frac{1}{2}$	$\frac{1}{3} \cdot \frac{1}{2} + \frac{2}{3} \cdot \frac{1}{2}$	$\frac{2}{3} \cdot \frac{1}{2}$

At t = 2, $U_2 = -1$

State	0	1	2	3	4	5
$p(x_2)$	0	0	0	$\frac{1}{6}$	$\frac{1}{2}$	$\frac{1}{3}$

At t = 2, $U_2 = -1$, $Z_2 = \text{door}$

State	0	1	2	3	4	5
$p(x_2)$						

At t = 2, $U_2 = -1$

State	0	1	2	3	4	5
$p(x_2)$	0	0	0	$\frac{1}{6}$	$\frac{1}{2}$	$\frac{1}{3}$

At t = 2, $U_2 = -1$, $Z_2 =$ door

State	0	1	2	3	4	5
$p(x_2)$	0	0	0	$\frac{1}{6} \cdot 0$	$\frac{\frac{1}{2} \cdot \frac{1}{4}}{\frac{1}{2} \cdot \frac{1}{4} + \frac{1}{3} \cdot \frac{1}{2}}$	$\frac{\frac{1}{3} \cdot \frac{1}{2}}{\frac{1}{2} \cdot \frac{1}{4} + \frac{1}{3} \cdot \frac{1}{2}}$

At t = 0, we are absolutely certain the robot is at state $X_0 = 0$

State	0	1	2	3	4	5
$p(x_0)$						

At t = 0, we are absolutely certain the robot is at state $X_0 = 0$

State	0	1	2	3	4	5
$p(x_0)$	1	0	0	0	0	0

At t = 1, $U_1 = \text{NOP}$, $Z_1 = \text{door}$

State	0	1	2	3	4	5
$p(x_1)$						

At t = 0, we are absolutely certain the robot is at state $X_0 = 0$

State	0	1	2	3	4	5
$p(x_0)$	1	0	0	0	0	0

At t = 1, $U_1 = \text{NOP}$, $Z_1 = \text{door}$

State	0	1	2	3	4	5
$p(x_1)$	0	0	0	0	0	0

At t = 0, we are "absolutely" certain the robot is at state $X_0 = 0$

State	0	-	2	3	4	5
$p(x_0)$	19	1	1	1	1	1
	20	100	100	100	100	100

At t = 1, $U_1 = \text{NOP}$, $Z_1 = \text{door}$

State	0	1	2	3	4	5
$p(x_1)$						

At t = 0, we are "absolutely" certain the robot is at state $X_0 = 0$

State	0	1	2	3	4	5
$p(x_0)$	19	1	1	1	1	1
	20	100	100	100	100	100

At t = 1, $U_1 = \text{NOP}$, $Z_1 = \text{door}$

State	0	1	2	3	4	5
$p(x_1)$	0	0	0	0	$\frac{1}{3}$	$\frac{2}{3}$

Always believe, even if just a little, in the improbable! (deterministic approaches are fragile!)

Fast Robots 2025

adapted from Prof. Fred Martin at Umass

Example 2 Bayes with beans

- World
 - 1D continuous, 7 states
 - ... door at state 5
- Motion model
 - 80% correct, 20% fail
- Sensor model
 - 90% correct, 10% fail
- Initial belief
- Take an action: +1
- Take a sensor reading: door!

Г 0	1

Fast Robots 2025

adapted from Prof. Fred Martin at Umass

- 8x10 discrete world
 - Known map with obstacles and walls
- Robot state
 - Location in the map (no orientation) •
 - Initial state is (0,0)

Fast Robots 2025

x is the set of possible locations

X is one location

Example 3 Transition model

• No matter what I tell my robot to do, it makes a random move or stays in place!

Fast Robots 2025

x is the set of possible locations

X is one location

Example 3 Transition model

- No matter what I tell my robot to do, it makes a random move or stays in place!
- Transition matrix, A
 - Probability to move from state *j* to state *i*

j [all states, columns]

Example 3 Practical implementation

- Set up the world
- Compute the transition matrix, A
- Take actions
 - Cumulative distribution

Example 3 Prediction step

1.	Prediction step $(bel(x_{t-1}), \mu_t)$:
2.	for all x_t do
3.	$\overline{bel}(x_t) = \sum_{x_{t-1}} p(x_t v_t, x_{t-1}) \ bel(x_{t-1})$
4.	end for

1. Matrix implementation

2.
$$\overline{bel} = A \cdot bel_{t-1}$$

where *A* is the transition matrix (80x80) and *bel* is the probability distribution over all states (80x1)

Example 3 Prediction step

Fast Robots 2025

 $\dots \overline{bel}_{100}$

Example 3 Observations

- The robot may not know where it is, but it **does** have a physical state
- It will have observations tied to that state

- In every time step, we sense each of the four neighboring cells (N, E, S, W)
- In z, each reading is independent and correct with 90% probability

Fast Robots 2025

x is the set of possible locations

X is one location

z are the sensor measurements

- In every time step, we sense each of the four neighboring cells (N, E, S, W)
- In z, each reading is independent and correct with 90% probability

Fast Robots 2025

p(z|X)

- $p(\text{no walls} | x) = 0.1 \cdot 0.9 \cdot 0.9 \cdot 0.9$

 - $p(W|x) = 0.1 \cdot 0.9 \cdot 0.9 \cdot 0.1$
 - $p(S \mid x) = 0.1 \cdot 0.9 \cdot 0.1 \cdot 0.9$
 - $p(\mathbf{E} \,|\, x) = 0.1 \cdot 0.1 \cdot 0.9 \cdot 0.9$
 - $p(NW|x) = 0.9 \cdot 0.9 \cdot 0.9 \cdot 0.1$

- In every time step, we sense each of the four \bullet neighboring cells (N, E, S, W)
- In z, each reading is independent and correct with 90% probability

Fast Robots 2025

If all readings are correct:

•
$$\Sigma |z_t - z'_{xt}| = 0$$

•
$$p_z(x_t) = 0.6561$$

If all readings are incorrect:

•
$$\Sigma |z_t - z'_{xt}| = 4$$

•
$$p_z(x_t) = 0.0001$$

- **Likelihood of Observations,** p_{7X} :
- for all x_t do
- $p_{zX}(x_t) = 0.9^{4-\Sigma|z_t z'_{xt}|} \ 0.1^{\Sigma|z_t z'_{xt}|}$ 3.
- end for

where $p_{_{T}X}$ is a vector (80x1)

- In every time step, we sense each of the four neighboring cells (N, E, S, W)
- In z, each reading is independent and correct with 90% probability

1. Algorithm Bayes_Filter (bel_{t-1}, z_t) : $\overline{bel} = A \ bel_{t-1}$ for all x_t do 3. $p_{zX}(x_t) = 0.9^{4-\Sigma|z_t - z'_{xt}|} \ 0.1^{\Sigma|z_t - z'_{xt}|}$ 4. end for 5. $= \frac{p_{zX} \ \overline{bel}}{\Sigma(p_{zX} \ \overline{bel})}$ $bel_t =$ 6. 7. return bel_{+}

Fast Robots 2025

Only do this for states with a belief > threshold

Can we do better?

- Improved transition model

Fast Robots 2025

In two steps, we homed in on where we are!

• Deliberately move in directions that give you more information

Today's examples

- Example 1: robot in the 1D world
 - Important to have some belief in all states
- Example 2: Bayes with beans
 - Important to normalize
- Example 3: (x,y) robot in a grid world
 - Important to improve computational efficiency lacksquare
 - Matrices
 - Pre-cache

1.	Algorithm Bayes_Filter (<i>bel</i> (x_{t-1}), u_t , z_t) :
2.	for all x_t do
3.	$\overline{bel}(x_t) = \sum_{x_{t-1}} p(x_t u_t, x_{t-1}) \ bel(x_{t-1})$
4.	$bel(x_t) = \eta p(z_t x_t) \overline{bel}(x_t)$
5.	end for
6.	return $bel(x_t)$

Summary of Bayes Filter

- Use temporal consistency between observations that are poor estimates individually
- Localization can work with...
 - completely random motion
 - noisy sensors
 - Remember to...
 - remain probabilistic
 - normalize
 - improve efficiency

1.	Algorithm Bayes_Filter (<i>bel</i> (x_{t-1}), u_t , z_t) :
2.	for all x_t do
3.	$\overline{bel}(x_t) = \sum_{x_{t-1}} p(x_t u_t, x_{t-1}) \ bel(x_{t-1})$
4.	$bel(x_t) = \eta p(z_t x_t) \overline{bel}(x_t)$
5.	end for
6.	return $bel(x_t)$ IT PAYS
	TO BE BAYES

