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Class Action Items

 |Lab 9: mapping starts today! The world is setup in the front room of the lab.
* |f you still need to work on Lab 8, there is space in the hallway
« Remember there are extra points for best stunt and best blooper!
 We will send a google poll next week after extension period ends.
* Please install the simulator before class on Thursday!

 Next lecture is a flipped classroom, please bring your laptops! We will help
students debug their simulator downloads.

 We will also help if you have questions about the exercises.



Lab 9: Mapping

Objective: generate a map using your robot and ToF
sensor (range finding)

Strategy: Place your robot in (at least) 4 marked positions
on the floor and spin while taking measurements.

Control:

* Open loop

* PID on orientation (DMP or integrated gyro)

* PID on angular velocity (gyro or differentiated DMP) R e

Sanity check: polar plot, repeated polar plots

Scatter plot: Use transformation matrices : ” E

Convert to a line-based map

Images from Mikayla Lahr (2024) and Aryaa Pai (2022)



https://mikaylalahr.github.io/FastRobotsLabReports/startbootstrap-resume-master/dist/index.html#Lab%209
https://pages.github.coecis.cornell.edu/avp34/ECE4600-webpage/lab9.html
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Summary of Bayes Filter

* The robot performs a series of alternating actions/ measurements

e (Given:

1. Algorithm Bayes Filter (bel(x,_,), u,, z,) :
» Sensor model: p(z, | x,) 2. for all x, do
bel(x,) = 2, pox|u, x,_y) bel(x,_y)

bel(xt) =1 p(z, | X;) w(xz)

end for

» Action model: p(x, | u, x,_)

A

» Initial conditions: p(x,)

6. return bel(x,)

« Compute;:

o State of dynamic system

» Posterior of the state (belief): bel(x,) = p(x,| uy, zy, ..., U, 2,)



Example 1
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Example 1

 So, what do we need to run the Bayes Filter?

e Motion model

px+1|x,u=+1)=0.5
px|lx,u=4+1)=0.5

. px—1|x,u=-1)=0.3
px|lx,u=-—1)=0.5

e Measurement model

p(Z =door| X=5)=0.5
p(Z = door| X =4) =0.25 0.25
p(Z=door| X=3)=0




Example 1

At t = 0, no information
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State

0

p(xp)
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Example 1
At t = 0, no information
State 0 1 2 3 4 )
1 1 1 1 1 1
P¥o) ; 5 ; ; ; ;

Attr =1, U, = NOP, Z, = door

State 0 1 2 3 4 5

p(x;)

Do we have to do the prediction step?

Do the update step!
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Example 1

At t = 0, no information

State 0 1 D 3 4 5
() 1 1 1 1 1 1
Pto 6 6 6 6 6 6

Attr =1, U, = NOP, Z, = door

State 0 1 2 3 4 5

p(xp) 0 0 O 0
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Example 1
Atr=1, U, = NOP, Z, = door
State 0 1 2 3 4 S
1 2
px;) 0 0 0 0 N >

Att=2, U2=—1

State 0 1 2 3 4 5

p(x,)
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Example 1
Atr=1, U, = NOP, Z, = door
State 0 1 2 3 4 S
1 2
px;) 0 0 0 0 N >

Att=2, U2=—1

State 0 1 2 3 4 5

p(x,) 0 0 0
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Example 1

A’[t=2, U2:—1

State 0 1 2 3 4 5
(x,) 0 0 0 : : :
P2 6 0 3

Att =2, U,=—-1, Z, =door

State 0 1 2 3 4 5

p(x,)
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Example 1

A’[t=2, U2:—1

State 0 1 2 3 4 5
(x,) 0 0 0 : : :
P2 6 0 3

Att =2, U,=—-1, Z, =door

State 0 1 2 3 4 5
1 1 1 1
1 2 4 3 2
p(xy) 0 0 0 E'O I 1,1 11 1,11
2 4 3 212 4 3 2




Example 1

At = 0, we are absolutely certain the robot is at state X, = 0
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State

0

1

2

p(xp)




Example 1

At = 0, we are absolutely certain the robot is at state X, = 0

Fast Robots 2025

State 0 1 2 5

p(xp) 1 0 0 0
Atr =1, U, = NOP, Z, = door

State 0 1 2 5

p(x;)




Example 1

At = 0, we are absolutely certain the robot is at state X, = 0

Fast Robots 2025

State 0 1 2 5

p(xp) 1 0 0 0
Attr =1, U, = NOP, Z, = door

State 0 1 2 5

p(x;) 0 0 0 0
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Example 1
At = 0, we are "absolutely" certain the robot is at state X, = 0
State 0 1 2 3 4 5
) 19 1 1 1 1 1
Pio 20 100 100 100 100 100

Attr =1, U, = NOP, Z, = door

State 0 1 2 3 4 5

p(x;)
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Example 1

At = 0, we are "absolutely" certain the robot is at state X, = 0

State 0 1 2 3 4 5
. 19 1 1 1 1 I
Pio 20 100 100 100 100 100

Attr =1, U, = NOP, Z, = door

State 0 1 2 3 4 5
(x)) 0 0 0 0 1 z
P\Xq 3 3

Always believe, even If just a little, iIn the improbable!
(deterministic approaches are fragile!)
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Example 2

adapted from Prof. Fred Martin at Umass
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Example 2

Bayes with beans

 World
1D continuous, 7 states
e ...door at state 5

e Motion model

e 80% correct, 20% fall
* Sensor model

* 90% correct, 10% falil
* |nitial belief
* Take an action: +1

* Jake a sensor reading: dootr! |
adapted from Prof. Fred Martin at Umass



Example 3
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Example 3

» 8x10 discrete world
« Known map with obstacles and walls

* Location in the map (no orientation) . J

e Robot state

* |nitial state is (0,0 . . .
0.0 X Is the set of possible locations

X is one location
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Example 3

Transition model

 No matter what | tell my robot to do, it makes
a random move or stays in place!

X Is the set of possible locations

X is one location
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Example 3

Transition model

 No matter what | tell my robot to do, it makes
a random move or stays in place!

 TJransition matrix, A

rows]

* Probability to move from statej to state -

| [all states

| [all states, columns]



Example 3

Practical implementation

e Set up the world

 Compute the transition matrix, A

e Take actions

e Cumulative distribution

e find(Mtri1*A*s >= rand(),1l, " first’);

1

’_I

057

— Cumulative distribution
—rand()

20

40 60

State, s

80

| [all states, rows]

Fast Robots 2025

| [all states, columns]
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Example 3

Prediction step

I.  Prediction step (bel(x,_,), })) : |
2. for all x, do "'\1
— .
3. bel(x) =%, p(x]| % x,_;) bel(x,_;) — L
4. end for = . _."-‘.'
S i
1. Matrix implementation 3 ""l._I .
-+ "
2. bel = A - bel,_, % - L""'-..
where A 1s the transition matrix (80x80) and bel 1s the C=U ' "-.l_. T
probability distribution over all states (80x1) — \'h

| [all states, columns]
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Example 3

Prediction step

BT HIET

b_el() ml E2

ETHICTTICAT

b_el3 . wlo . bell()()
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Example 3

Observations * The robot may not know

where 1t is, but it does have a

physical state
m m m * |t will have observations tied
- - - to that state
bel, bel, bel,
> I

b_el3 e belm e @100
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Example 3
Observation model

* |n every time step, we sense each of the four
neighboring cells (N, E, S, W)

with 90% probability B J

* |n z, each reading is iIndependent and correct

X Is the set of possible locations
X is one location

7 are the sensor measurements
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Example 3

Observation model

* |n every time step, we sense each of the four
neighboring cells (N, E, S, W)

* |n z, each reading is iIndependent and correct
with 90% probability

p(mo walls|[x) =0.1-0.9-0.9-0.9
Highest likelihood —— p(N |x) =0.9-0.9-0.9 - 0.9
p(W|[x)=0.1-09-09-0.1

p(S|x)=0.1-0.9-0.1-0.9

How many combinations are there _ . . .
oer state? p(E |x) =0.1-0.1-0.9-0.9

2! P(NW|x) =0.9-0.9-0.9-0.1

p| X)
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Example 3

Observation model

* |f all readings are correct:

* In every time step, we sense each of the four + 2|z,— 24| =0
neighboring cells (N, E, S, W) . p.(x) = 0.6561

* |If all readings are incorrect:
+ 2|z -zl =4
. p.(x,) =0.0001

* |n z, each reading is iIndependent and correct
with 90% probability

1. Algorithm Bayes Filter (bel(x,_,), u,, z,) : 1. Likelihood of Observations, p_y:

2. 2. for all x, do

3 bel(x) =X, px|u, x,_;) bel(x,_;) 3. p.x(x) = 0.9 =22l (, 12152
4. bel(x,) = n bel(x)) 4. end for

s-

6. return bel(x,) where p_y is a vector (80x1)
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Example 3

Observation model

* |n every time step, we sense each of the four
neighboring cells (N, E, S, W)

* |n z, each reading is iIndependent and correct
with 90% probability

1. Algorithm Bayes Filter (bel(x, ), u,, z,) :
2. for all x, do

1. Compute new belief:

szb_el
7 2. bel, = —
bel(x,) = %,  px|u, x,_,) bel(x,_,) ‘ >(p.ybel)
4. bel(x)) = n p(z,|x,) bel(x,)
3. end for where bel is a vector (80x1)

dp,yi tor (80x1
6. return bel(x,) and p,x 1s a vector (80x1)
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Example 3

1. Algorithm Bayes Filter (bel,_;, z,) :
2. M — A belt_l

3. for all x, do —

Only do this for states with a belief > threshold

4. p.x(x) = 0.9 >zl 0.1~ | Cache and look up
. end for
bel
6. bel = —X
2(pZX bel)

7. return bel,
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Example 3

Sensed W wall Sensed N wall

o I |
A

Can we do better?

No clue!

A

In two steps, we
homed in on where
we are!

A

* |mproved transition model

* Deliberately move in directions that give you more information



Today’s examples

« Example 1: robot in the 1D world

* |mportant to have some belief Iin
all states

« Example 2: Bayes with beans
* |mportant to normalize

 Example 3: (x,y) robot in a grid world
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1.

A

Algorithm Bayes_Filter (bel(x,_,), u, z,) :
for all x, do
bel(x,) = 2, pox|u, x,_y) bel(x,_y)
bel(x,)) = n p(z|x,) bel(x,)
end for

return bel(x,)

* |mportant to improve computational efficiency

e Matrices

e Pre-cache




Summary of Bayes Filter
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 Use temporal consistency between observations that are poor estimates

individually
L . 1. Algorithm Bayes Filter (bel(x,_,), u, z,) :
* | ocalization can work with... gorithm Bayes_Filter (Del(x,). t; 2)
2. for all x, do
* completely random motion bel(x) = =, px|u, x,_,) bel(x,_))
* NOISYy Sensors 4. bel(x,) = n p(z,|x,) bel(x,)
3. end for
« Remember to..
6. return bel(x,) IT PAYS/A™

* remain probabilistic
 normalize

* improve efficiency




