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Class Action Items

• Lab 10: localization (sim) starts today!


• The lab is graded S/U (all of the code is already posted on previous 
websites)


• If you do get an unsatisfactory, you will need to redo it.


• About to send a bunch of google forms your way


• ECE Robotics Day availability (if you are unavailable it’s because of another 
course conflict)


• Lab 8 votes on stunts and bloopers


• This is the last technical content lecture of the course!
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Lab 10 Localization
• This lab is graded S/U

• Tasks

• Read the full lab and the notebook (before you show up to lab)

• Perform grid localization for the sample trajectory

• Video demo

• Discuss:

• Control

• Motion model and the prediction step

• Sensor model and the update step

• Choosing parameters, effect of changing parameters

• Ways to mitigate computational load

• Evaluate the Bayes Filter

• Evaluate how well this will work on your robot

Fast Robots 2025



Grid-based localization

• Simple


• … but it is computationally expensive  
for large workspaces
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1. Algorithm Bayes_Filter  

2. for all  do 

3.  

4.  

5. end for 

6. return  

(bel(xt−1), ut, zt) :

xt

bel(xt) = Σxt−1
p(xt |ut, xt−1) bel(xt−1)

bel(xt) = η p(zt |xt) bel(xt)

bel(xt)



Monte Carlo Localization

• Non-parametric approach based on Particle Filters

• Model the distribution by samples

• Prediction step

• Draw from the samples

• Move forward based on motion model


• Update step

• Weigh samples by their importance

• Sensor model


• Resample based on their weight

• The more samples we use, the better the estimate!
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Monte Carlo Localization

• Non-parametric approach based on Particle Filters


• Model the distribution by samples
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1. Algorithm Bayes_Filter  

2. for all  do 

3.  

4.  

5. end for 

6. return  

(bel(xt−1), ut, zt) :

xt

bel(xt) = Σxt−1
p(xt |ut, xt−1) bel(xt−1)

bel(xt) = η p(zt |xt) bel(xt)

bel(xt)

Draw  from xi
t p(xt |ut, xi

t−1)

Importance factor  wi
t ∝ p(zt |xt)

Prior samples



Monte Carlo Localization

• How do you obtain samples from an arbitrary 
distribution?


• Closed form solution for a uniform 
distribution


• Closed form solution for a Gaussian 
distribution
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Monte Carlo Localization

• How do you obtain samples from an arbitrary 
distribution?


• Closed form solution for a uniform 
distribution


• Closed form solution for a Gaussian 
distribution


• Use a proposal distribution to generate samples 
from the target distribution


• Account for differences using a weight


• w = target/ proposal
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Monte Carlo Localization

• Each particle, j, is a pose hypothesis


• Proposal distribution from the motion model


• 


• Correction via the observation model


• 


• Resample


• Draw sample  with probably  and repeat  
times

x[ j]
t ∼ p(xt |xt−1, ut)

w[ j]
t =

target(x[ j]
t )

proposal(x[ j]
t )

= p(zt |xt)

i w[ j]
t J
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https://www.cs.uml.edu/~holly/teaching/4510and5490/fall2018/Lecture-Particle-Filters.pdf

https://www.cs.uml.edu/~holly/teaching/4510and5490/fall2018/Lecture-Particle-Filters.pdf


Monte Carlo Localization
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https://www.cs.uml.edu/~holly/teaching/4510and5490/fall2018/Lecture-Particle-Filters.pdf

https://www.cs.uml.edu/~holly/teaching/4510and5490/fall2018/Lecture-Particle-Filters.pdf


Monte Carlo Localization
• How would you deal with a kidnapped robot?


• Randomly insert samples proportional to the average likelihood of the 
particles
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• Pros


• Works well for high-uncertainty 
scenarios


• Much more efficient than grid 
cells


• Cons


• Scales poorly with higher  
dimensional workspaces



Brief intro to SLAM



Related terms

• State estimation


• Localization


• Mapping


• SLAM


• Navigation


• Motion planning

Inferring a location given a map

Inferring a map given a location

Learning a map and locating the robot simultaneously



Related terms

• State estimation


• Localization


• Mapping


• SLAM 

• Navigation


• Motion planning



Given all we have learned…
• Transformation matrices


• Sensors and actuators (and probabilistic models)


• Controllers (PID, LQR)


• Observers (KF)


• Mapping


• Localization


• Bayes Filter and grid-localization


• Particle Filter


• Graph Search and Planning

Include the map into the state

Add grid-occupancy
Let particles represent both pose and map

… how would you implement SLAM?
(where could your estimate of the map fit in?)



Given all we have learned…
• Markov localization in a grid


• Localization: estimate your cell pose within the map


• Mapping: estimate if cells are occupied or not

• Every grid cell is a random variable


• SLAM: estimate pose and if cells are occupied or not

• 100x100 grid cells (pretty small map)

• Localization: (x, y, theta) = 100x100x100 states

• Map: (x,y) = 10,000 staes

• SLAM 100x100x100x10,000 states


• Same issue for particle filters…


• Balance parametric and non-parametric approaches



Why is SLAM hard?
• Robot pose/path and map are both unknown (not independent)


• Map and pose estimates are correlated
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Why is SLAM hard?
• Robot pose/path and map are both unknown (not independent)


• Map and pose estimates are correlated


• Good data association is key



Why is SLAM hard?
• The mapping between observations and the map is unknown


• Picking the wrong data association can cause map divergence



Trilateration using range measurements
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Trilateration using range measurements
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Related terms

• State estimation


• Localization


• Mapping


• SLAM 

• Navigation


• Motion planning

• Given

• Control inputs  



• Relative observations 




• Compute

• Map of the environment 



• Robot path (seq. of poses) 

Uo:k = {u1, u2, …uk}

Z = {z1, z2, …zn}

m = {m1, m2, …mn}

X0:k = {x0, x1, …xk}

• Error in pose

• Error in observation

• Error in mapping

• Errors accumulate

Landmarks are considered motionless



Simultaneous Localization and Mapping
Graphical model

• Nodes are random variables


• Directed edges are variable dependencies


• Gray nodes: observed or directly measured 
variables


• White nodes: inferred latent variables


• Full SLAM: compute a joint posterior over the 
whole path of the robot and the map


• Online SLAM: compute a posterior over the 
current pose along with the map

xt-1 

ut-1 

zt-1 

xt 

ut

zt

xt+1 

ut+1

zt+1

m



SLAM Representations

• Grid maps or scans


• Landmark-based

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & 
Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;…] 

[Leonard et al., 98; Castelanos et 
al., 99: Dissanayake et al., 2001; 
Montemerlo et al., 2002;…]



Simultaneous Localization and Mapping

• Nodes are random variables


• Directed edges are variable dependencies


• Gray nodes: observed or directly measured 
variables


• White nodes: inferred latent variables


• Full SLAM: compute a joint posterior over the 
whole path of the robot and the map


• Online SLAM: compute a posterior over the 
current pose along with the map

xt-1 

ut-1 

zt-1 

xt 

ut

zt

xt+1 

ut+1

zt+1

m

p(x1:t, m |z1:t, u1:t, x0)



Simultaneous Localization and Mapping

• Nodes are random variables


• Directed edges are variable dependencies


• Gray nodes: observed or directly measured 
variables


• White nodes: inferred latent variables


• Full SLAM: compute a joint posterior over the 
whole path of the robot and the map


• Online SLAM: compute a posterior over the 
current pose along with the map

xt-1 

ut-1 

zt-1 

xt 

ut

zt

xt+1 

ut+1

zt+1

m

p(xt, m |z1:t, u1:t)



Simultaneous Localization and Mapping
• Prediction (prediction step):


• 


• Correction (update step):


• 


• We can solve the localization problem with the assumption that we know the map


• 


• We can solve the mapping problem with the assumption that we know the location


•

p(xt, m |z0:t, u1:t, x0) = Σt−1P(xt |xt−1, u1:t)P(xt−1, m |Z0:t−1, U1:t, x0)

p(xt, m |z0:t−1, u0:t, x0) = ηP(zt |xt, m)P(xt, m |Z0:t, U1:t, x0)

P(xt |Z0:t, U0:t, m)

P(m |X0:t, Z0:t, U0:t)



Interesting Features
• Robot observations of the relative landmark locations can be considered nearly 

independent, because the relative landmark locations are independent from the robot’s 
coordinate frame


• Robot observations of the absolute landmark locations are less certain, because the 
absolute landmark location is strongly related to the robot’s coordinate frame


• Because landmarks are correlated even unobserved landmarks can be updated, such that 
correlations are increased for every observation we make


• The accuracy of the relative map increases for more observations



Simultaneous Localization and Mapping
Why is it hard?

• Map size

• The larger the environment relative to the robot’s perceptual range, the more difficult it is to 

acquire the map

• Perceptual ambiguity

• The more different places look alike, the more difficult it is to establish correspondence 

between different locations traversed at different points in time

• Cycles

• Motion-cycles are particularly difficult to map



SLAM solutions

• The trick is to find an appropriate representation for the observation and the 
motion problem


• Graph SLAM


• EKF SLAM


• Fast SLAM

Global optimization: outputs the most likely map and trajectory

Probability distribution over landmarks and the most recent 
pose (online SLAM)



Graph SLAM



Graph SLAM
• Graph represents a set of objects where pairs of objects are connected by 

links encoding relations between them


• Create an edge if…


• … the robot moves from  to 

• edge corresponds to odometry measurement


• … the robot observes the same part of the environment from  and from 


• Edges represent constraints


• Nodes represent the state (poses and landmarks)

• Given a state, we can compute predicted observations

• Find a configuration of the nodes so that the real and predicted constraints 

are as similar as possible

• Minimize the Least Square Error over all constraints

xi xi+1

xi xj

xi xj

xi+1xi



Graph SLAM
• Treat constraints (generated by motions and observations) as elastic springs


• Minimize the energy in all the springs


• Any modern SLAM implementation has some version of this

• Pro: globally optimal

• Con: BIG optimization problem, only one output


• Tricks

• Combine poses over many time steps 

into single nodes to make the graph 
smaller


• If you see the same landmark from 
several poses, you can get rid of the 
pose and add a stronger constraint 
between those landmarks



EKF SLAM



EKF SLAM
• Goal: Estimate 


• Assume all noise is Gaussian


• Track a Gaussian belief of the current state and landmarks


• Apply the Kalman Filter…

p(xk, m |u1:k, z1:N)



Kalman Filter
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State estimate: 

State uncertainty: 

Process noise: 

Kalman filter gain: 

Measurement noise: 

μ(t)
Σ(t)

Σu
KKF

Σz

Kalman Filter ( )

1. 


2. 


3. 


4. 


5. 


6. Return  and 

μ(t − 1), Σ(t − 1), u(t), z(t)
μp(t) = Aμ(t − 1) + Bu(t)
Σp(t) = AΣ(t − 1)AT + Σu

KKF = Σp(t)CT(CΣp(t)CT + Σz)−1

μ(t) = μp(t) + KKF(z(t) − Cμp(t))
Σ(t) = (I − KKFC)Σp(t)

μ(t) Σ(t)

prediction

update

System

LQR KF

disturbance

noise

input dynamics 
model



EKF SLAM
• Goal: Estimate 


• Assume all noise is Gaussian


• Track a Gaussian belief of the current state and landmarks


• Linearize around every state and run the Kalman Filter


• Pros

• Super easy, well understood, runs online

• Works well for low-uncertainty problems


• Cons

• Works poorly for high-uncertainty problems

• States must be well-approximated by Gaussians

p(xk, m |u1:k, z1:N)

𝑥 = [℘̄
ℳ̄] =

℘
ℒ1
⋮

ℒ𝑛

𝑃 = [
𝑃℘℘ 𝑃℘ℳ

𝑃ℳ℘ 𝑃ℳℳ] =

𝑃℘℘ 𝑃℘ℒ1
… 𝑃℘ℒ𝑛

𝑃ℒ1℘ 𝑃ℒ1ℒ1
… 𝑃ℒ1ℒ𝑛

⋮
𝑃ℒ1℘

⋮
𝑃ℒ𝑛ℒ1

⋱ ⋮
… 𝑃ℒ𝑛ℒ𝑛

• Landmark matrix grows, 
making the inversion 
step costly!


• In Full SLAM the 
trajectory matrix grows 
even faster



EKF SLAM
• Goal: Estimate 


• Assume all noise is Gaussian


• Track a Gaussian belief of the current state and landmarks


• Linearize around every state and run the Kalman Filter


• Pros

• Super easy, well understood, runs online

• Works well for low-uncertainty problems


• Cons

• Works poorly for high-uncertainty problems

• States must be well-approximated by Gaussians

p(xk, m |u1:k, z1:N)
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Fast SLAM
• Half sample-based solution

• Particle filter

• Every particle has its own version of the map with 

a given trajectory


• Half analytical solution

• Landmark-based

• Each pose and map of independent features is 

updated analytically through EKF

• Grid-based map

• Occupancy of each grid cell is estimated by 

Bayes Filter

Victoria Park dataset 
University of Sydney

GPS 
FastSLAM

4km traverse

100 particles


<5m RMS position error



Fast SLAM
• Key idea: factorize the posterior


• 


• : pose estimation is approximated by the 
Particle Filter (can represent multiple hypotheses)


• : classic mapping problem, approx using 
EKF (efficient at representing belief in high dimensions)


• Outcome is a Marginalized Particle Filter (MPF)

• Each particle is a pose trajectory with an attached 

map corresponding to mean and covariance of each 
landmark

p(x1:k, m |z1:k) = p(m |x1:k, z1:k)p(x1:k |z1:k)

p(x1:k |z1:k)

p(m |x1:k, z1:k)

Victoria Park dataset 
University of Sydney

GPS 
FastSLAM

4km traverse

100 particles


<5m RMS position error



Fast SLAM
• Distribution is estimated by a fixed number of particles


• Each particle, k, contains an estimate of robot path and the 
mean and covariance of each of the n features


• 


• Step 1: Update particle trajectory (motion model)


• Step 2: Update particle landmarks with EKF (sensor model) 

• Linearize the observation model at 


• Only update associated landmarks 


• Step 3: Update weights based on 


• Step 4: Resample distribution

P[k](x[k]
t ; μ[k], Σ[k]

1 ; …μ[k], Σ[k]
n )

(x[k]
t , m)

p(zt |x[k]
t , m[k])

Victoria Park dataset 
University of Sydney

GPS 
FastSLAM

4km traverse

100 particles


<5m RMS position error
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State of the Art in SLAM

https://www.youtube.com/watch?v=6pRAhfBMW8w

https://www.youtube.com/watch?v=6pRAhfBMW8w


State of the Art in SLAM

https://www.youtube.com/watch?v=ufvPS5wJAx0

https://www.youtube.com/watch?v=6pRAhfBMW8w


State of the Art in SLAM
• Robotics


• 3D cameras with depth maps and high frame rates and resolution


• Dense 3D models of the world


• Uses ROS and deep learning to recognize features


• Come built-in in a range of robots


• Inherent to e.g. the RealSense tracking cameras


• 3D scanning/ reconstruction


• Virtual and augmented reality



State of the Art in SLAM


