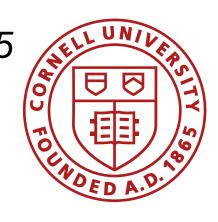
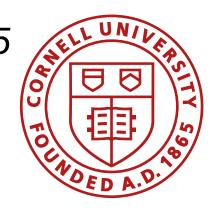
Particle Filters and SLAM Fast Robots, ECE4160/5160, MAE 4190/5190

E. Farrell Helbling, 4/15/25



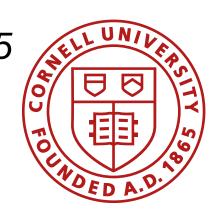
Class Action Items

- Lab 10: localization (sim) starts today!
 - The lab is graded S/U (all of the code is already posted on previous websites)
 - If you do get an unsatisfactory, you will need to redo it.
- About to send a bunch of google forms your way
 - ECE Robotics Day availability (if you are unavailable it's because of another course conflict)
 - Lab 8 votes on stunts and bloopers
- This is the last technical content lecture of the course!



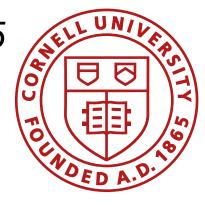
Lab 10 Localization

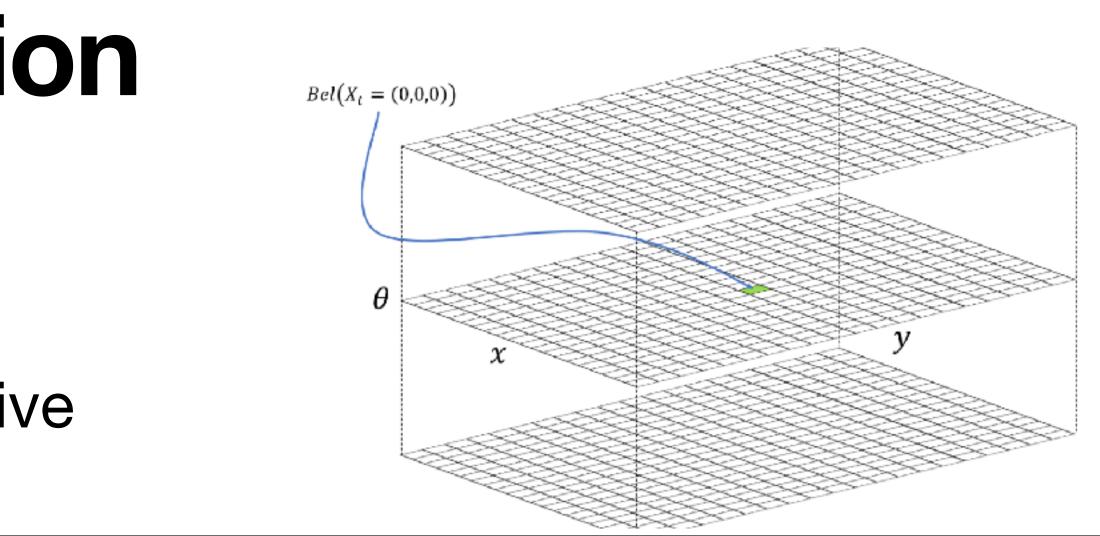
- This lab is graded S/U
- Tasks
 - Read the full lab and the notebook (before you show up to lab)
 - Perform grid localization for the sample trajectory
 - Video demo
 - Discuss:
 - Control
 - Motion model and the prediction step
 - Sensor model and the update step
 - Choosing parameters, effect of changing parameters
 - Ways to mitigate computational load
 - Evaluate the Bayes Filter
 - Evaluate how well this will work on your robot



Grid-based localization

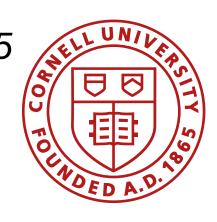
- Simple
- ... but it is computationally expensive for large workspaces
 - 1. Algorithm Bayes_Filter ($bel(x_{t-1})$) for all x_t do $\overline{bel}(x_t) = \sum_{x_{t-1}} p(x_t | u_t, x_{t-1}) \ bel(x_{t-1})$ 3. $bel(x_t) = \eta p(z_t | x_t) bel(x_t)$ |4. end for 5. 6. return $bel(x_t)$

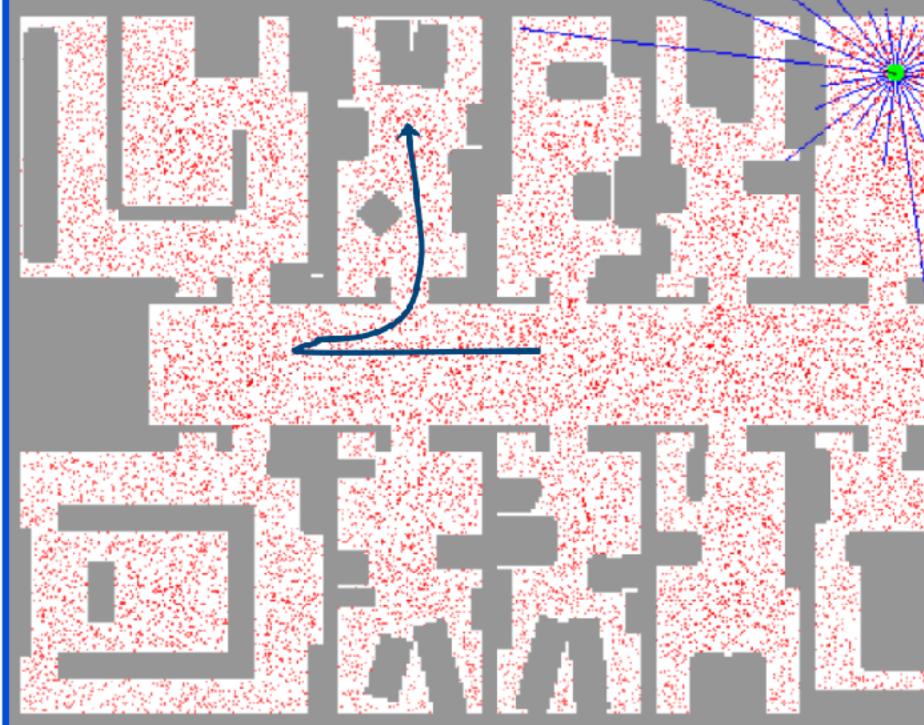


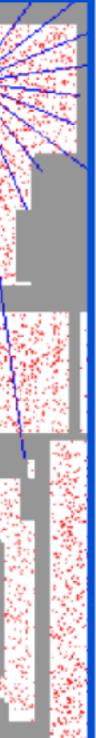


$$, u_t, z_t$$
)

- Non-parametric approach based on Particle Filters
- Model the distribution by samples
 - Prediction step
 - Draw from the samples
 - Move forward based on motion model
 - Update step
 - Weigh samples by their importance
 - Sensor model
 - Resample based on their weight
- The more samples we use, the better the estimate!

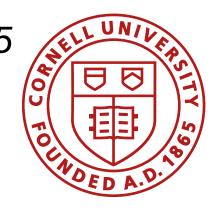






- Non-parametric approach based on Particle Filters
- Model the distribution by samples
 - 1. Algorithm Bayes_Filter ($bel(x_{t-1}), u_t, z_t$): **for** all x_t do $\overline{bel}(x_t) = \sum_{x_{t-1}} p(x_t | u_t, x_{t-1}) \ bel(x_{t-1}) \longleftarrow \text{Prior samples}$ 3. $bel(x_t) = \eta \ p(z_t | x_t) \ \overline{bel}(x_t)$ 4. end for 6. return $bel(x_t)$

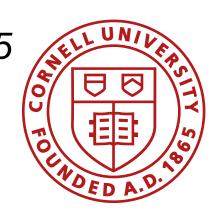
Fast Robots 2025

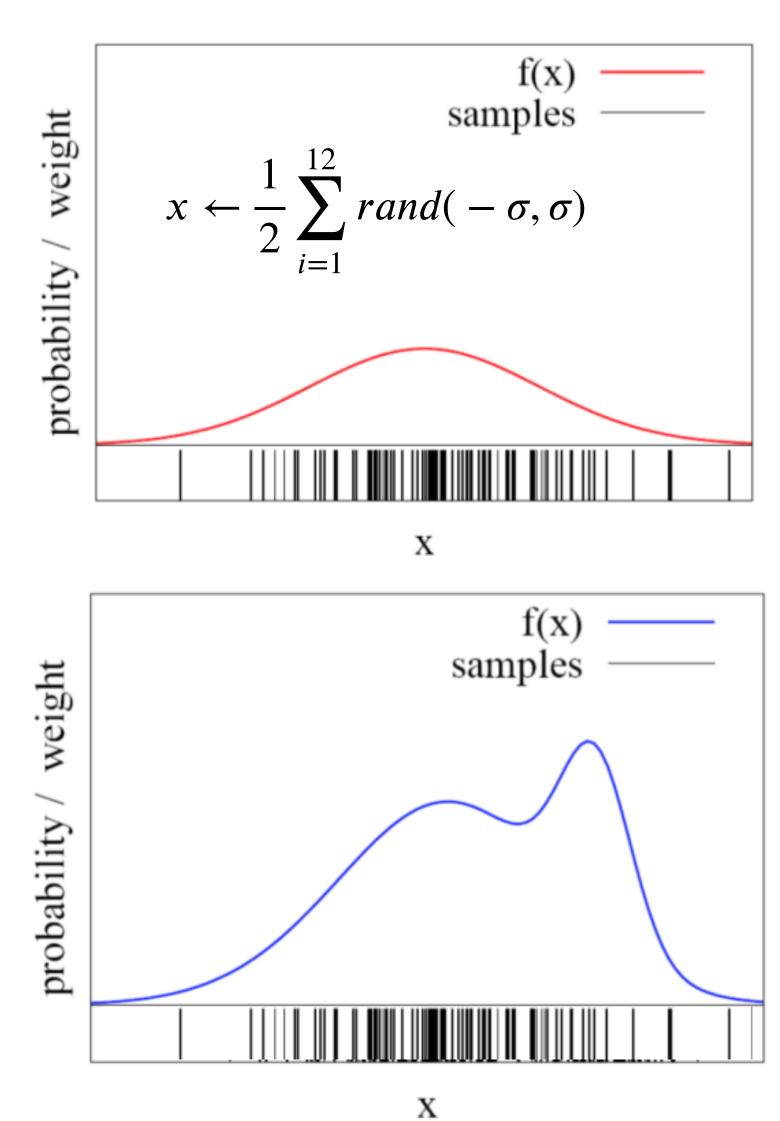


Draw x_t^i from $p(x_t | u_t, x_{t-1}^i)$

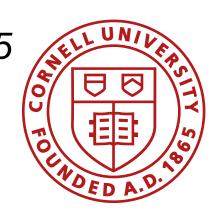
\Importance factor $w_t^i \propto p(z_t | x_t)$

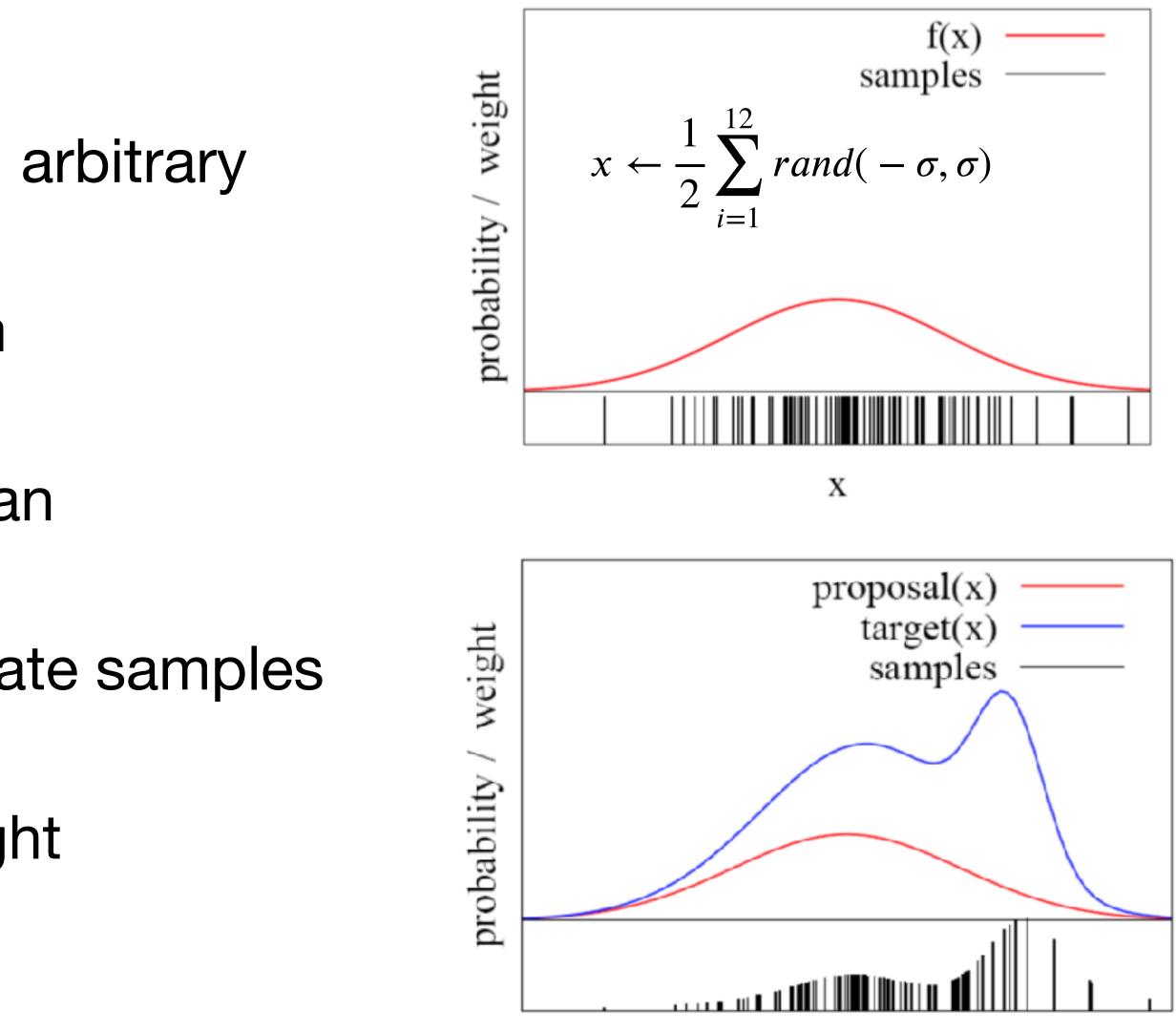
- How do you obtain samples from an arbitrary distribution?
 - Closed form solution for a uniform distribution
 - Closed form solution for a Gaussian distribution





- How do you obtain samples from an arbitrary distribution?
 - Closed form solution for a uniform distribution
 - Closed form solution for a Gaussian distribution
- Use a proposal distribution to generate samples from the target distribution
- Account for differences using a weight
 - w = target/ proposal





- Each particle, *j*, is a pose hypothesis
- Proposal distribution from the motion model

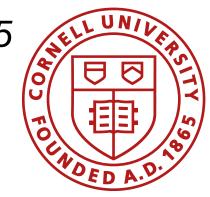
•
$$x_t^{[j]} \sim p(x_t | x_{t-1}, u_t)$$

Correction via the observation model

•
$$w_t^{[j]} = \frac{target(x_t^{[j]})}{proposal(x_t^{[j]})} = p(z_t | x_t)$$

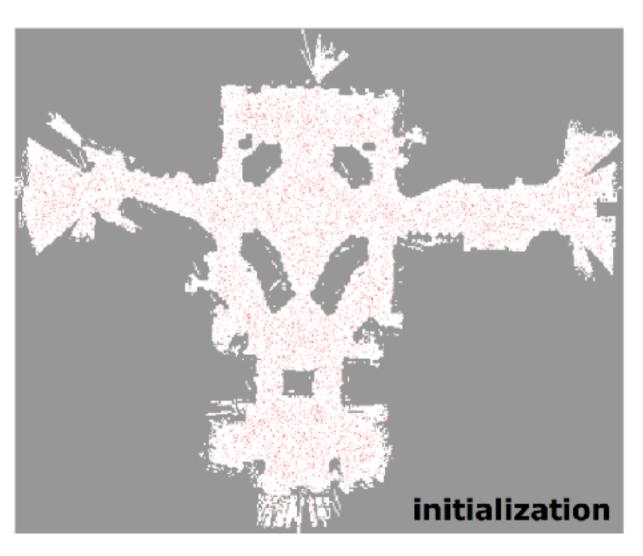
- Resample
 - Draw sample i with probably $w_t^{[j]}$ and repeat Jtimes

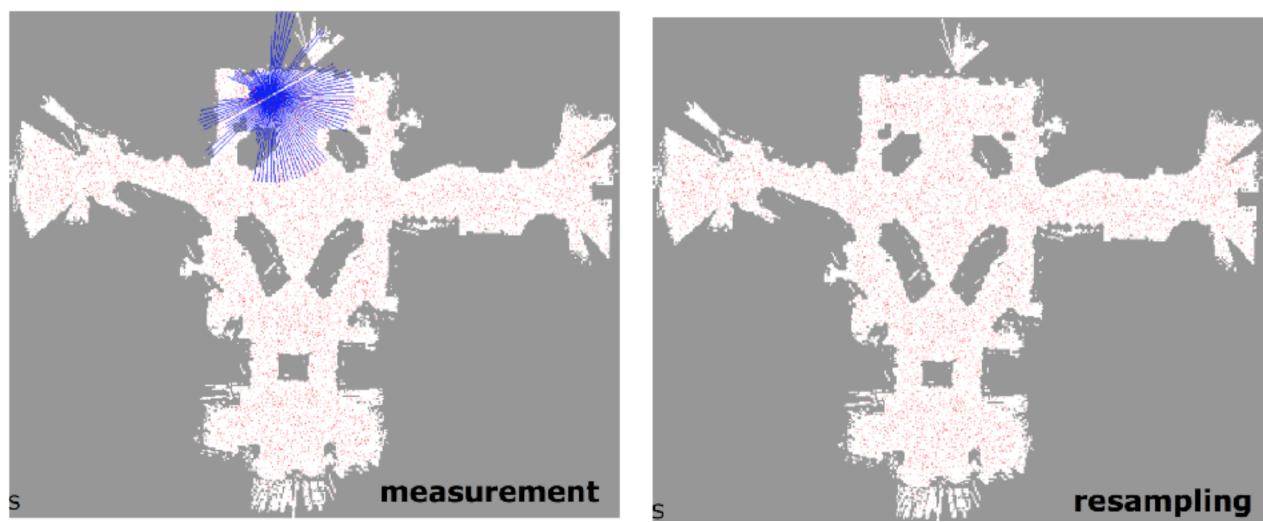
Fast Robots 2025

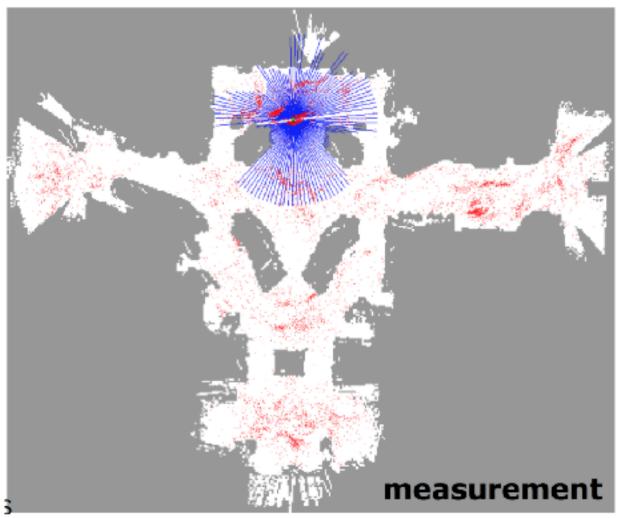


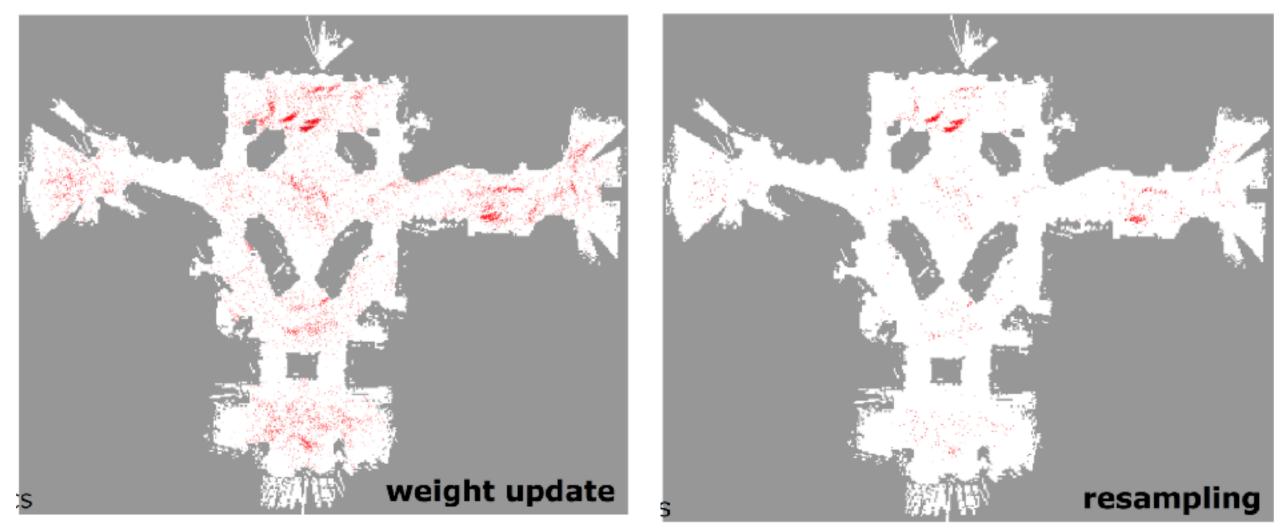
Particle_filter($\mathcal{X}_{t-1}, u_t, z_t$): $\bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$ 1:for j = 1 to J do 2: sample $x_t^{[j]} \sim p(x_t \mid u_t, x_{t-1}^{[j]})$ 3: $w_t^{[j]} = p(z_t \mid x_t^{[j]})$ 4: $\bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[j]}, w_t^{[j]} \rangle$ 5:6: end for7: for j = 1 to J do draw $i \in 1, \ldots, J$ with probability $\propto w_t^{[i]}$ 8: add $x_t^{[i]}$ to \mathcal{X}_t 9: 10:endfor 11:return \mathcal{X}_t

https://www.cs.uml.edu/~holly/teaching/4510and5490/fall2018/Lecture-Particle-Filters.pdf

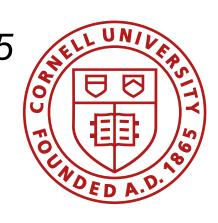


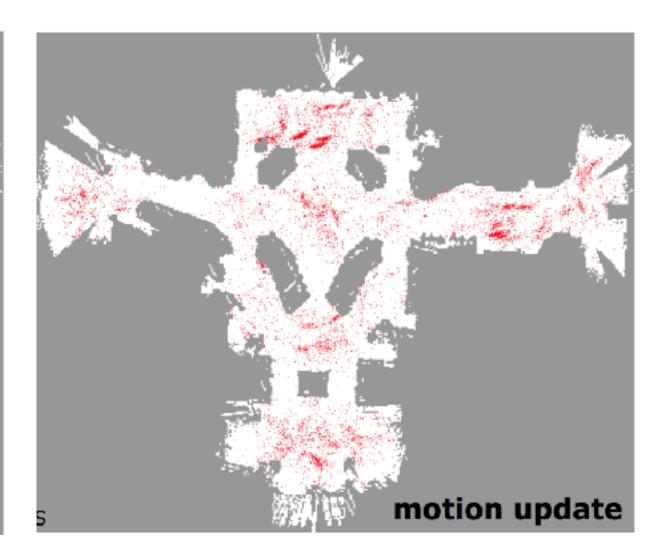






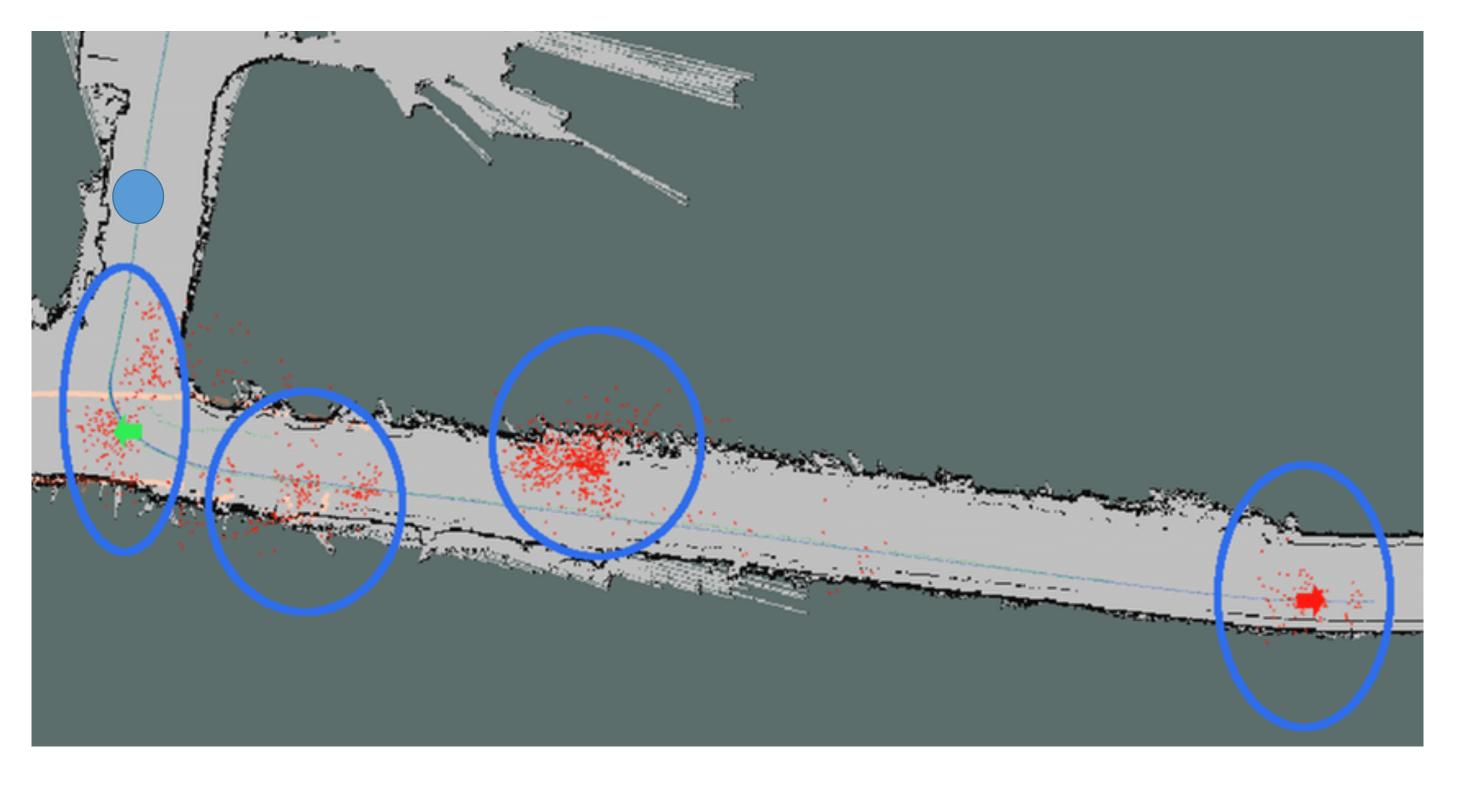
Fast Robots 2025

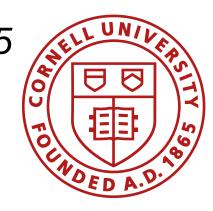




https://www.cs.uml.edu/~holly/teaching/4510and5490/fall2018/Lecture-Particle-Filters.pdf

- How would you deal with a kidnapped robot?
 - Randomly insert samples proportional to the average likelihood of the particles





- Pros
 - Works well for high-uncertainty scenarios
 - Much more efficient than grid cells
- Cons
 - Scales poorly with higher dimensional workspaces

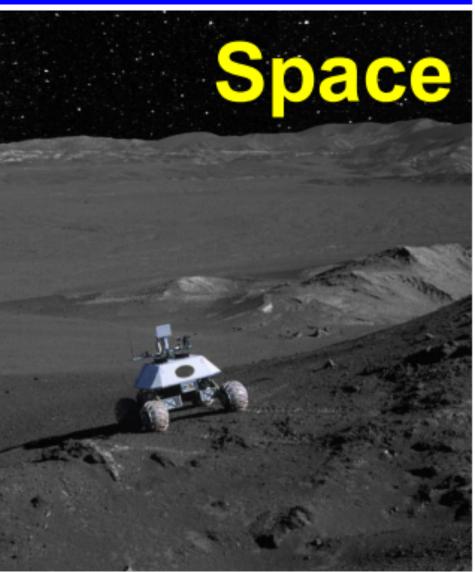
Brief intro to SLAM

Related terms

- State estimation
- Localization Inferring a location given a map
- Mapping Inferring a map given a location
- SLAM Learning a map and locating the robot simultaneously
- Navigation
- Motion planning ullet

Related terms

- State estimation
- Localization
- Mapping
- SLAM
- Navigation
- Motion planning



Underground

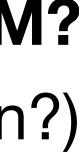
Given all we have learned...

- Transformation matrices
- Sensors and actuators (and probabilistic models)
- Controllers (PID, LQR)
- Observers (KF) Include the map into the state
- Mapping
- Localization
 - Bayes Filter and grid-localization Add grid-occupancy
 - Particle Filter
- Graph Search and Planning

Let particles represent both pose and map

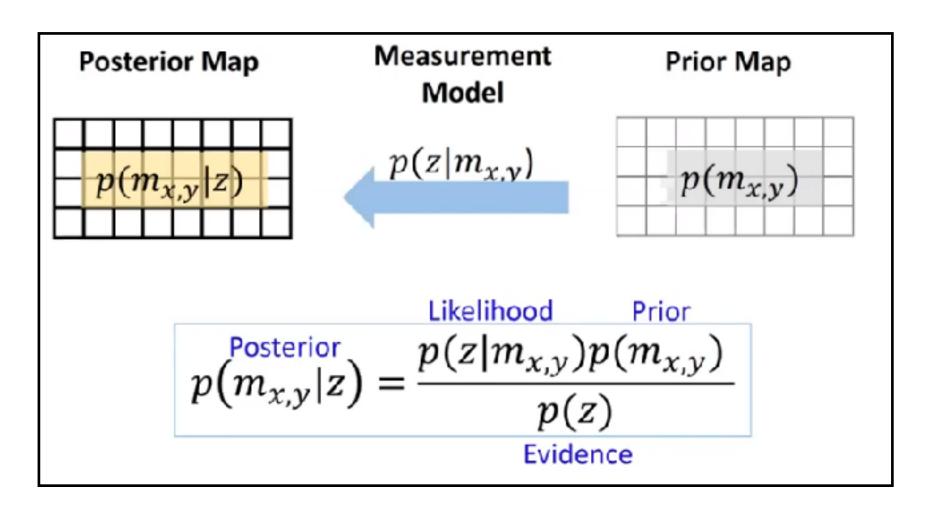
... how would you implement SLAM?

(where could your estimate of the map fit in?)

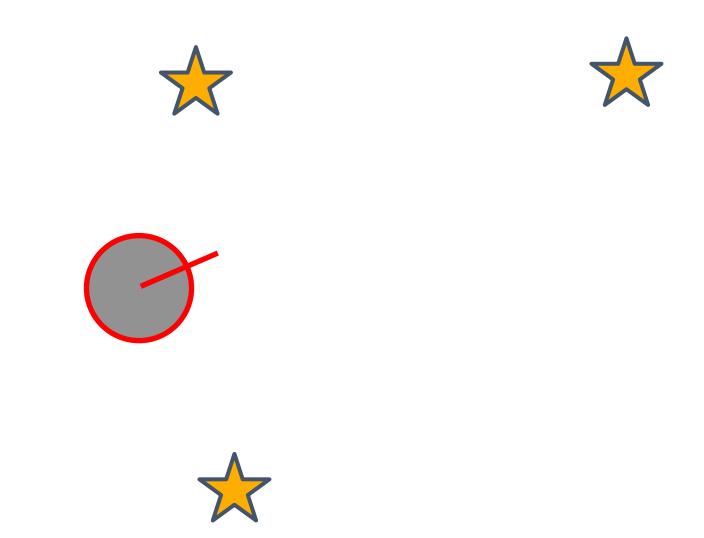


Given all we have learned...

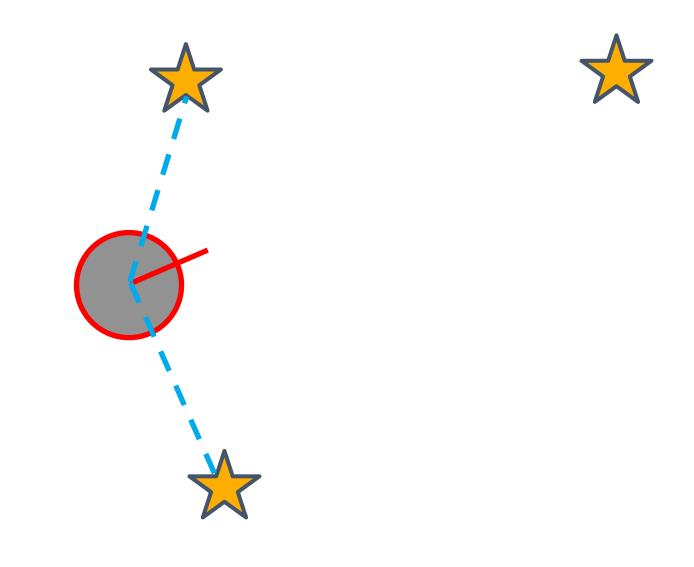
- Markov localization in a grid
 - Localization: estimate your cell pose within the map
 - Mapping: estimate if cells are occupied or not
 - Every grid cell is a random variable
 - SLAM: estimate pose and if cells are occupied or not
 - 100x100 grid cells (pretty small map)
 - Localization: (x, y, theta) = 100x100x100 states
 - Map: (x,y) = 10,000 staes
 - SLAM 100x100x10,000 states
- Same issue for particle filters...
 - Balance parametric and non-parametric approaches



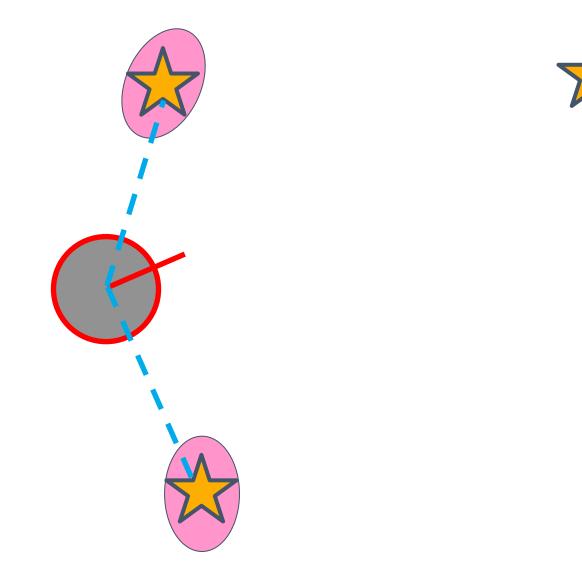
- Robot pose/path and map are both unknown (not independent)
- Map and pose estimates are correlated



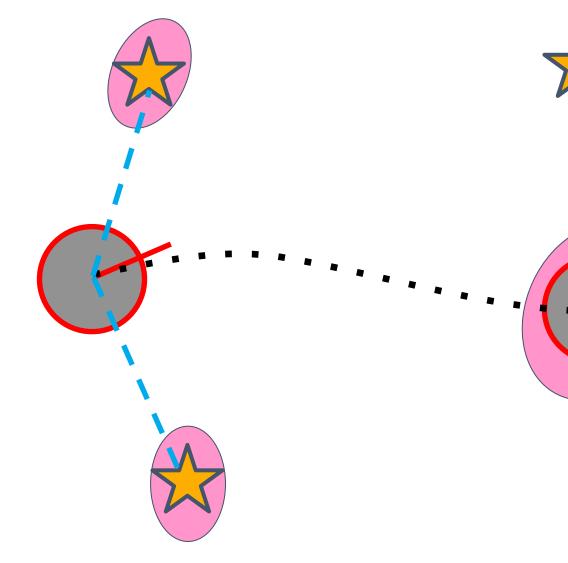
- Robot pose/path and map are both unknown (not independent)
- Map and pose estimates are correlated



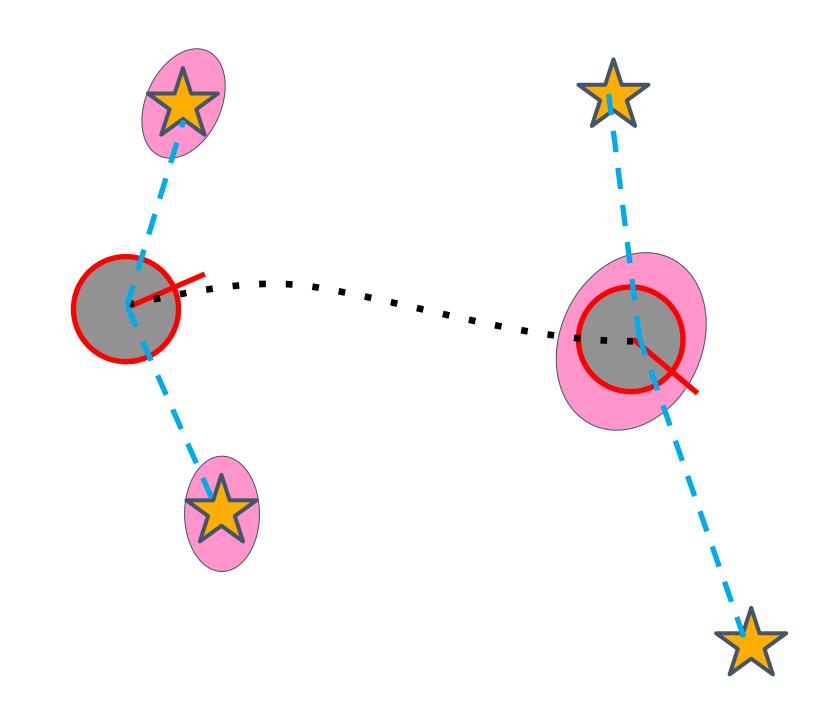
- Robot pose/path and map are both unknown (not independent)
- Map and pose estimates are correlated



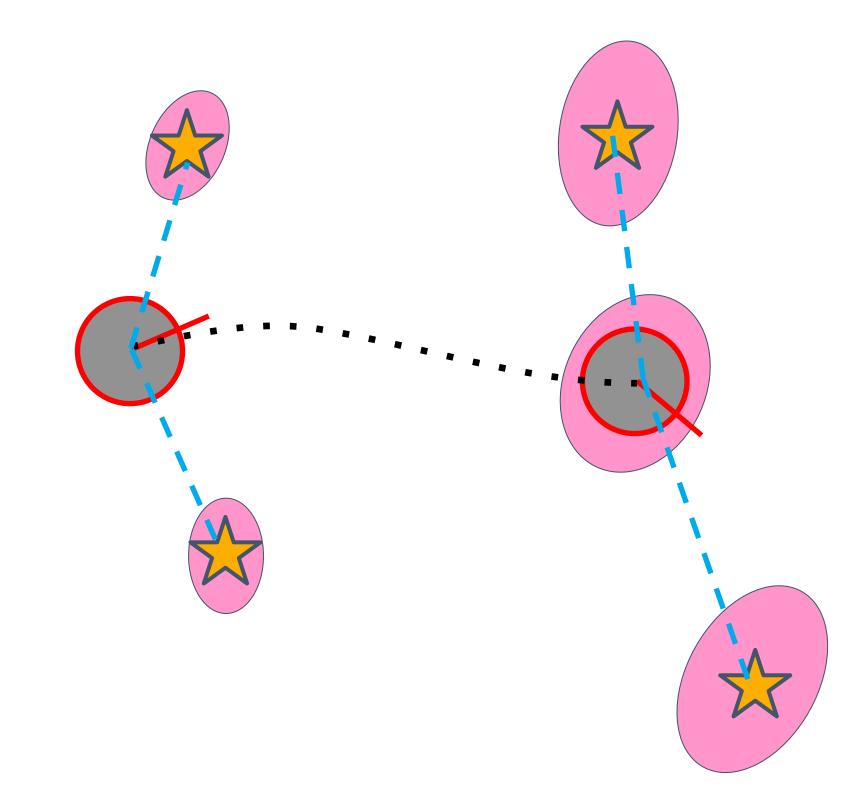
- Robot pose/path and map are both unknown (not independent)
- Map and pose estimates are correlated



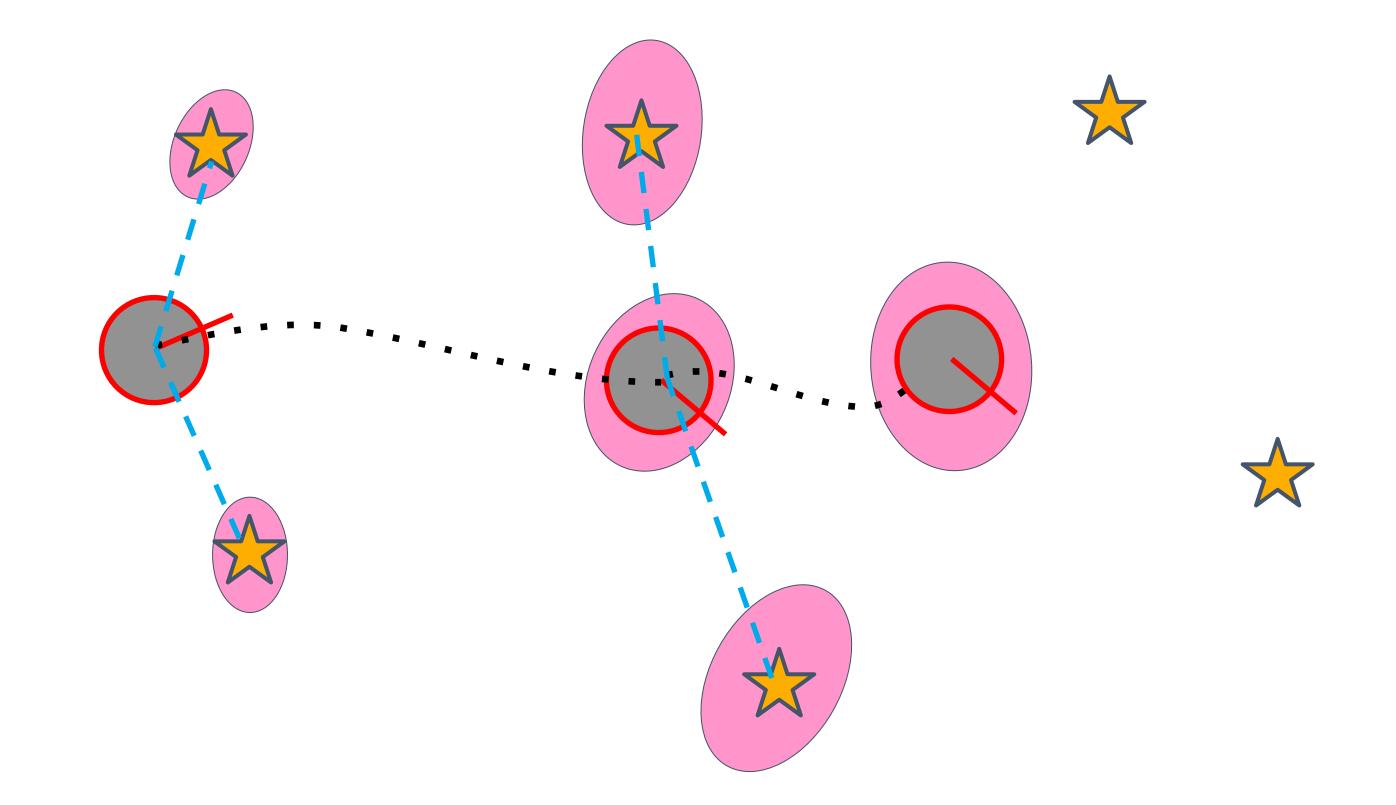
- Robot pose/path and map are both unknown (not independent)
- Map and pose estimates are correlated



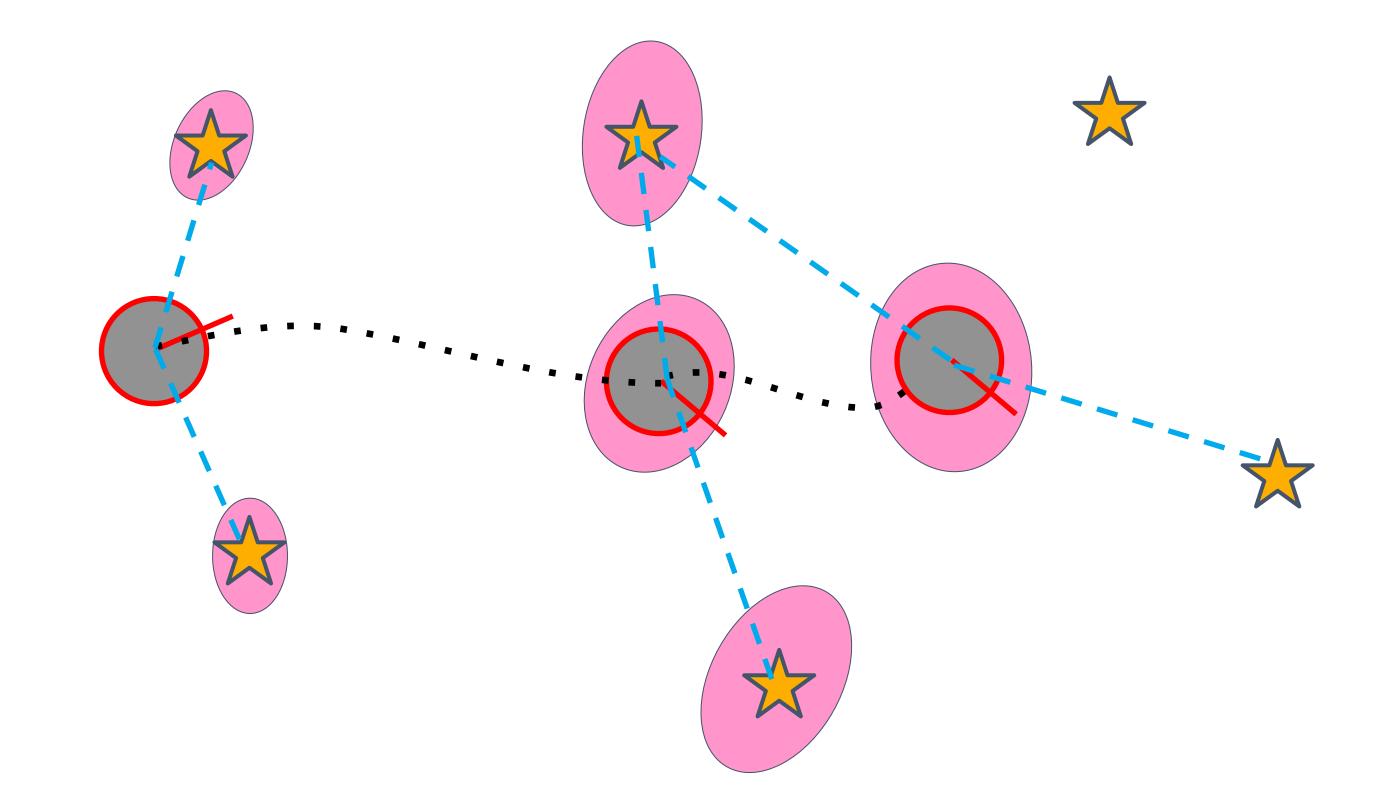
- Robot pose/path and map are both unknown (not independent)
- Map and pose estimates are correlated



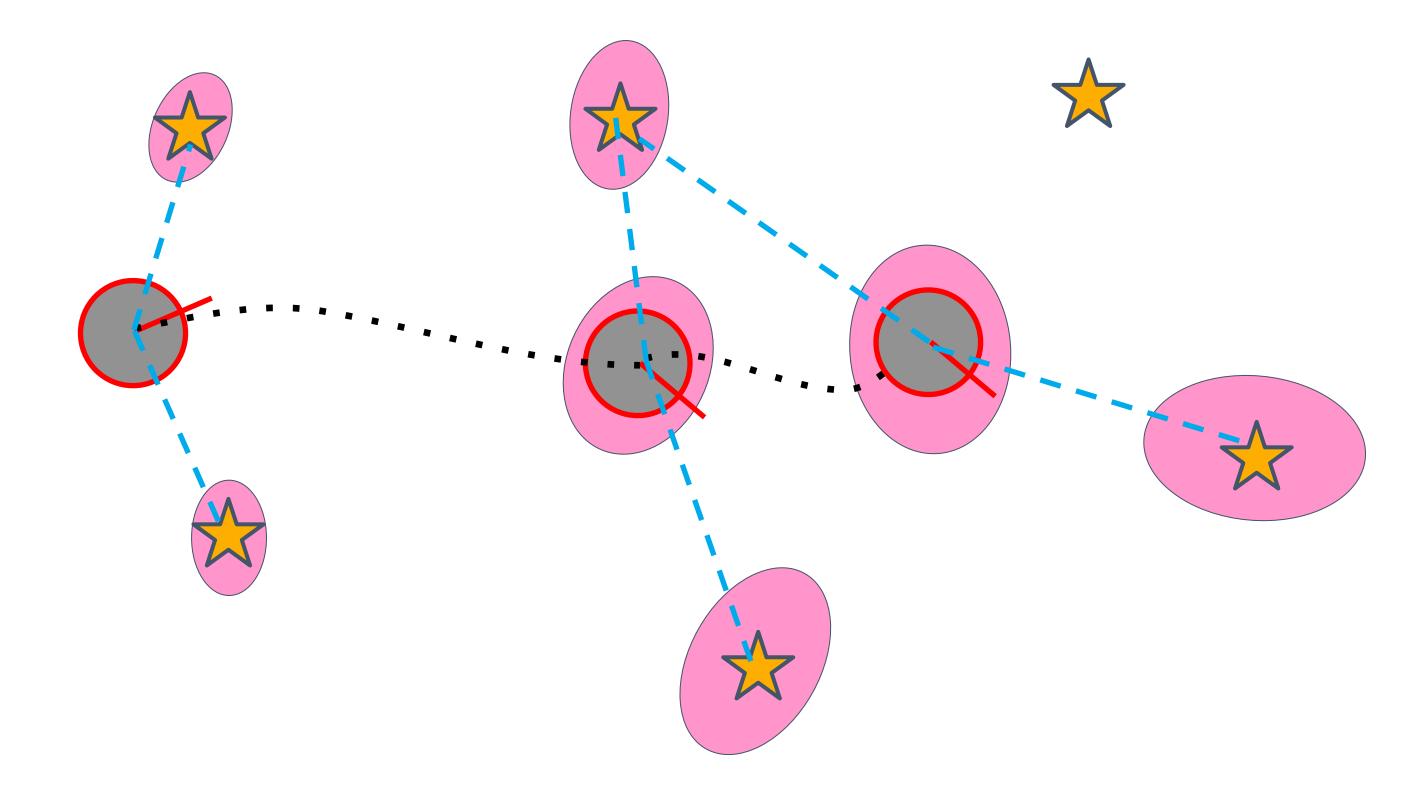
- Robot pose/path and map are both unknown (not independent)
- Map and pose estimates are correlated



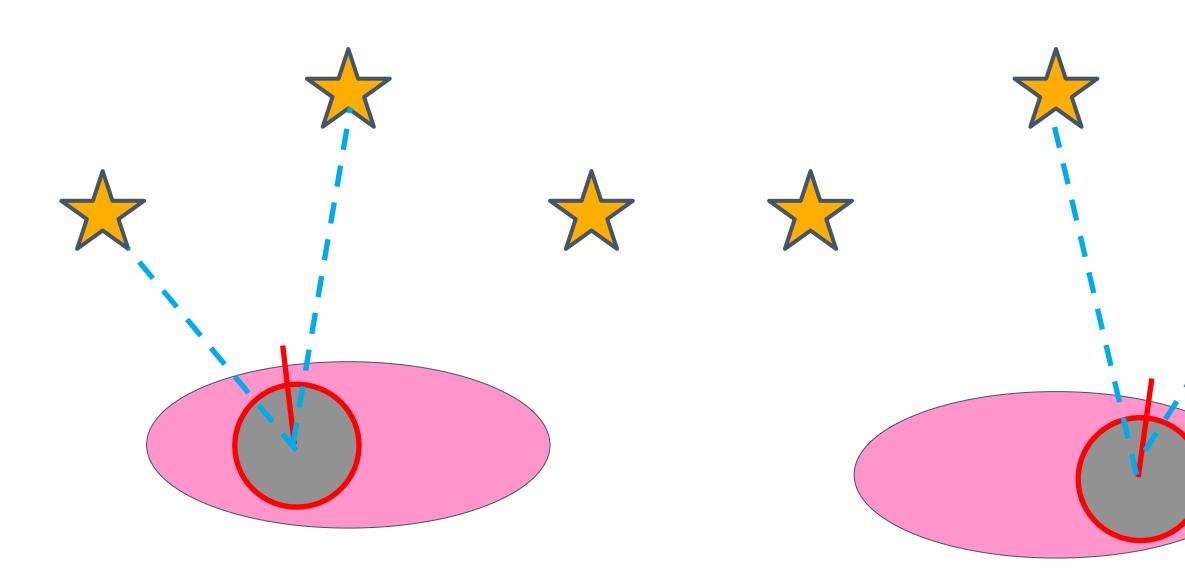
- Robot pose/path and map are both unknown (not independent)
- Map and pose estimates are correlated



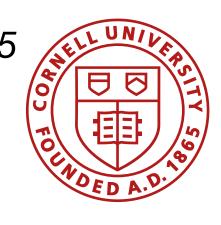
- Robot pose/path and map are both unknown (not independent)
- Map and pose estimates are correlated
- Good data association is key



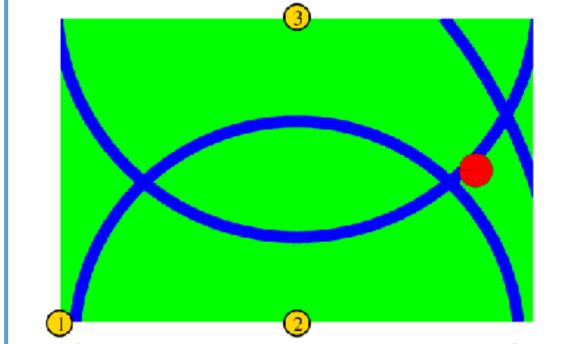
- The mapping between observations and the map is unknown
- Picking the wrong data association can cause map divergence

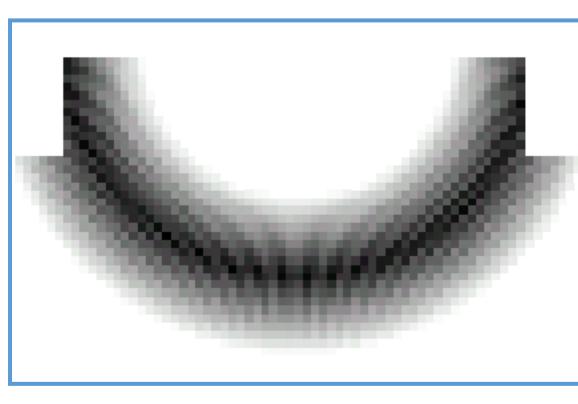


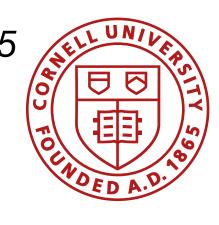
Trilateration using range measurements

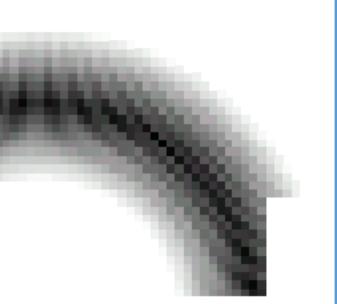


Trilateration using range measurements









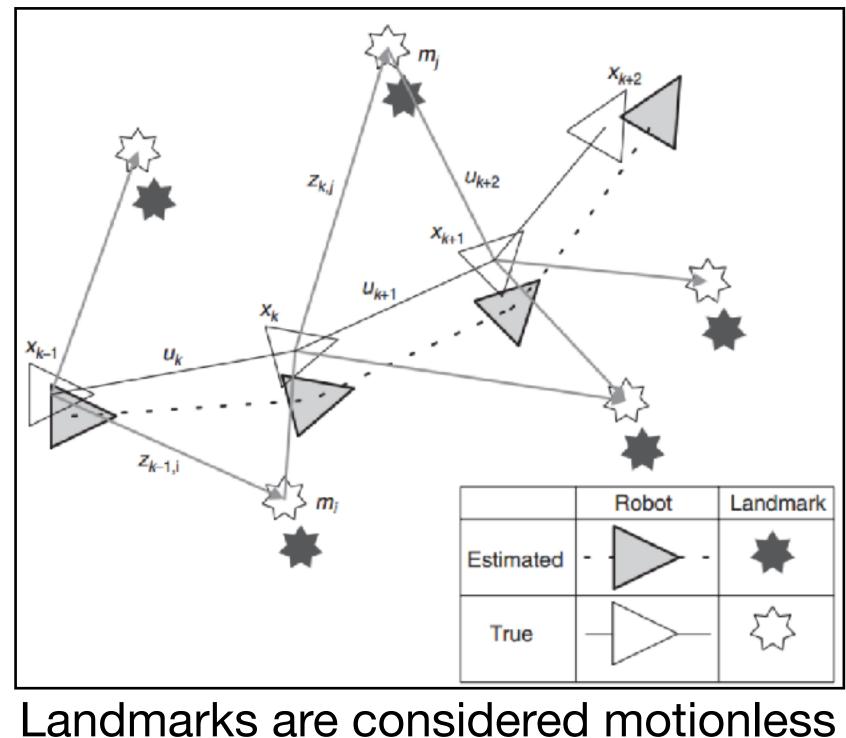
Related terms

- State estimation
- Localization
- Mapping
- SLAM
- Navigation
- Motion planning

- Given •
 - Control inputs $U_{o:k} = \{u_1, u_2, \dots u_k\}$
 - Relative observations $Z = \{z_1, z_2, \dots z_n\}$
- Compute
 - Map of the environment $m = \{m_1, m_2, \dots, m_n\}$
 - $X_{0:k} = \{x_0, x_1, \dots x_k\}$

• Robot path (seq. of poses)

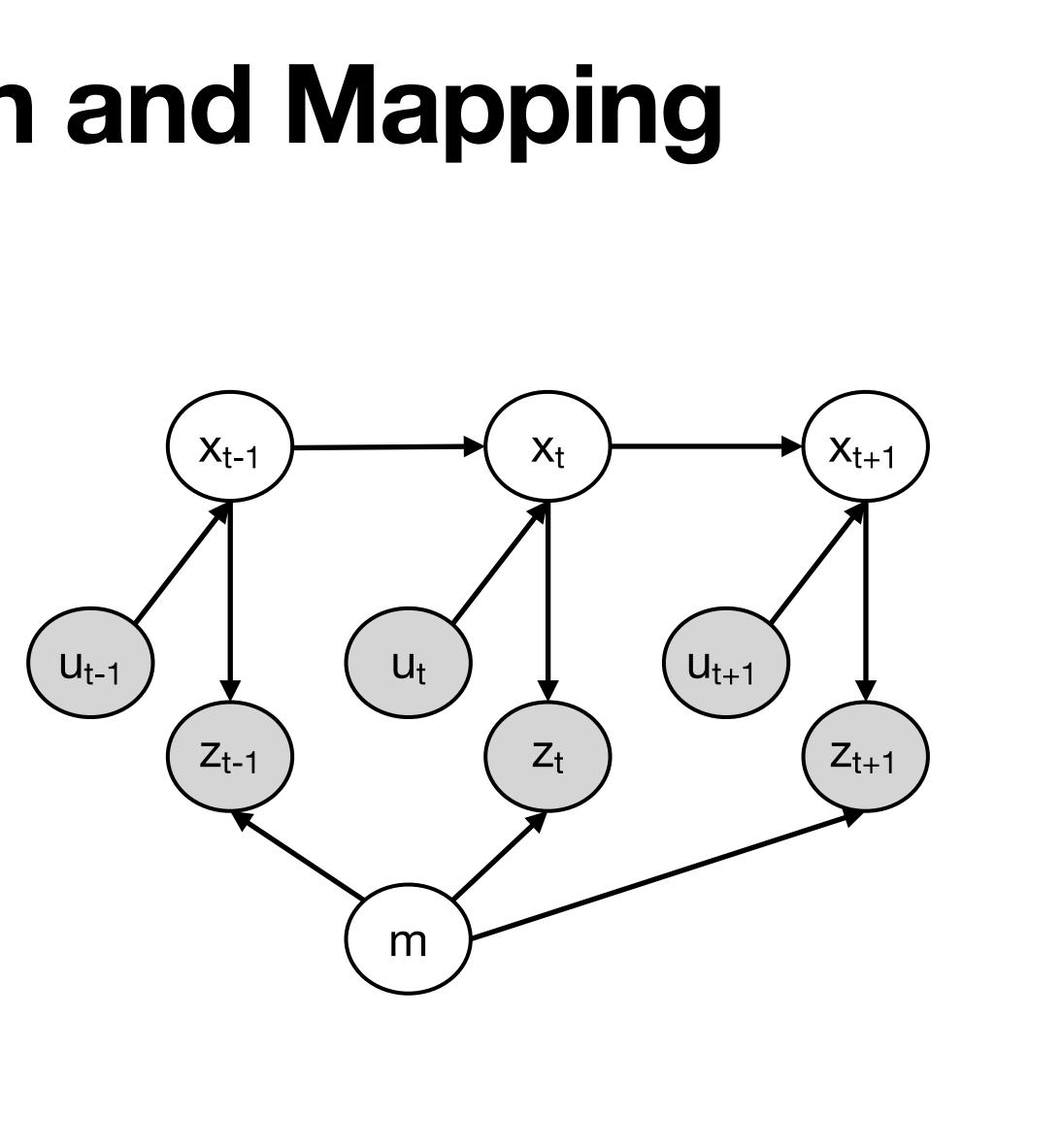
- Error in pose
- Error in observation
- Error in mapping
- Errors accumulate



Simultaneous Localization and Mapping Graphical model

- Nodes are random variables
- Directed edges are variable dependencies
- Gray nodes: observed or directly measured variables
- White nodes: inferred latent variables

cies sured

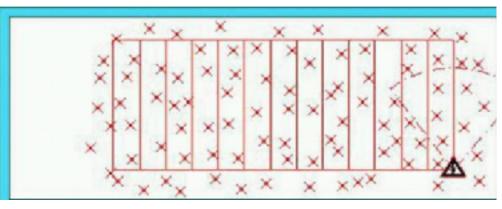


SLAM Representations

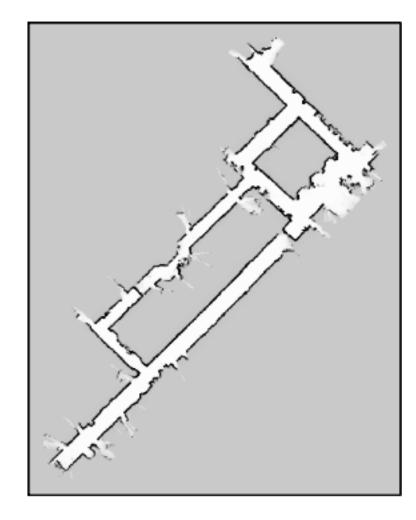
• Grid maps or scans

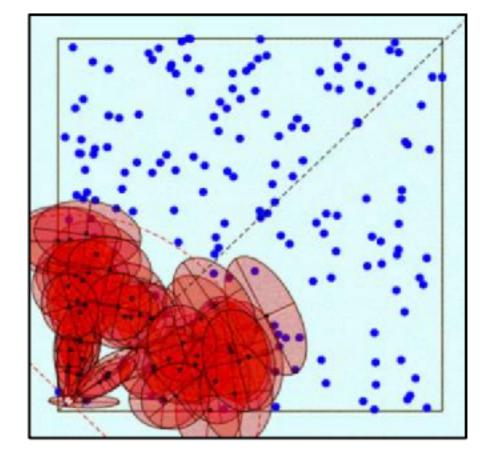
[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;...]

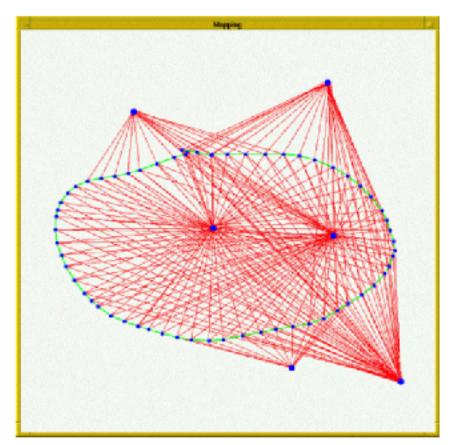
• Landmark-based



[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;...]

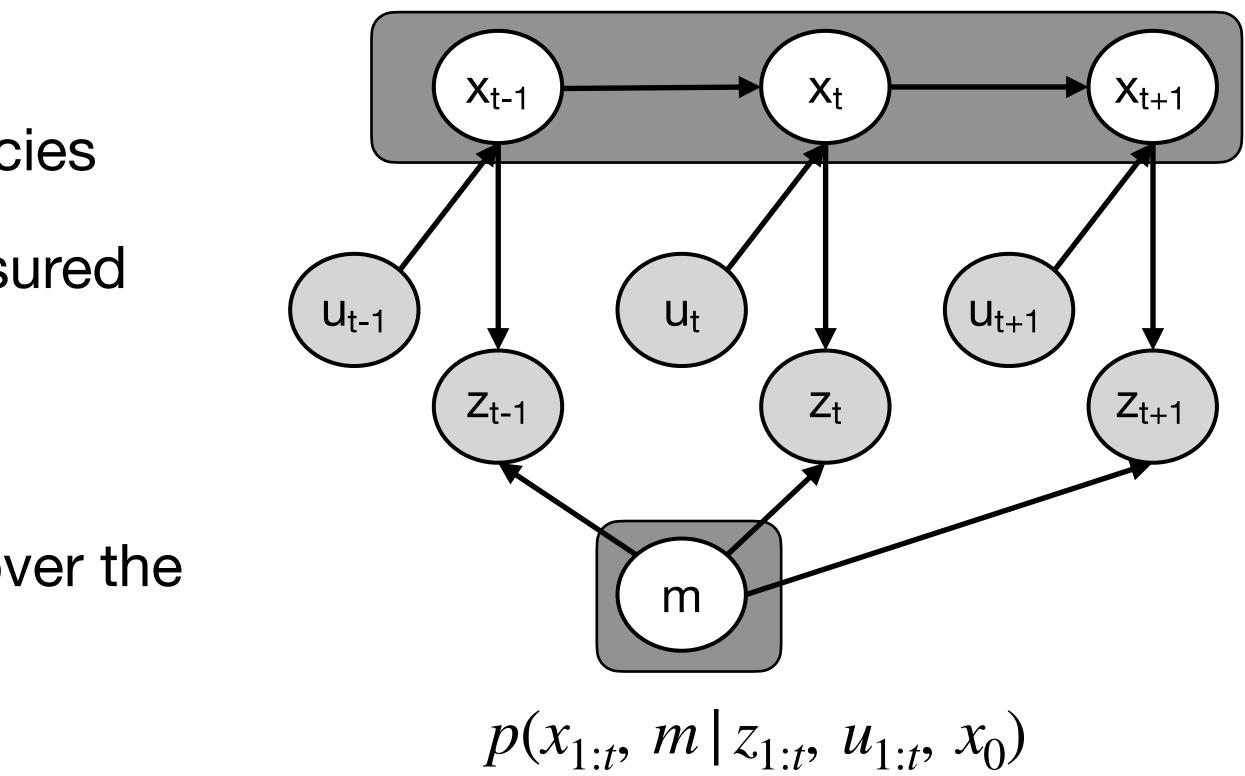






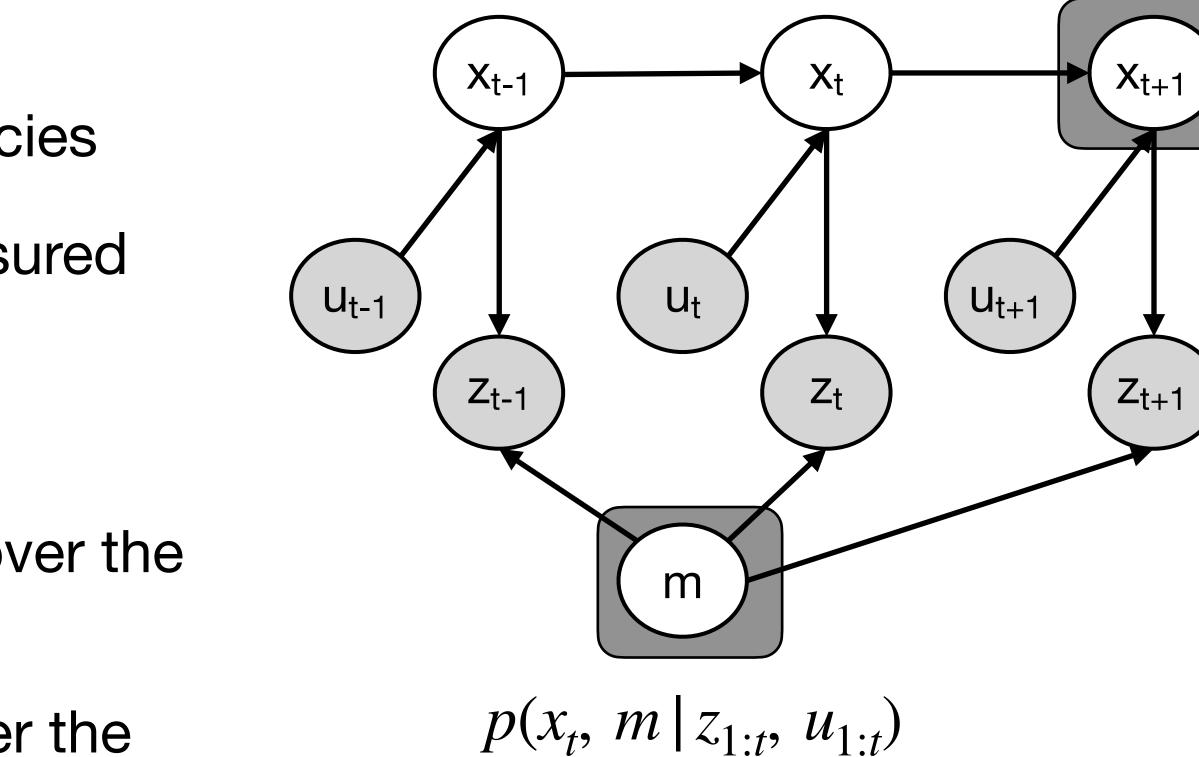
Simultaneous Localization and Mapping

- Nodes are random variables
- Directed edges are variable dependencies
- Gray nodes: observed or directly measured variables
- White nodes: inferred latent variables
- Full SLAM: compute a joint posterior over the whole path of the robot and the map



Simultaneous Localization and Mapping

- Nodes are random variables
- Directed edges are variable dependencies
- Gray nodes: observed or directly measured variables
- White nodes: inferred latent variables
- Full SLAM: compute a joint posterior over the whole path of the robot and the map
- Online SLAM: compute a posterior over the current pose along with the map



Simultaneous Localization and Mapping

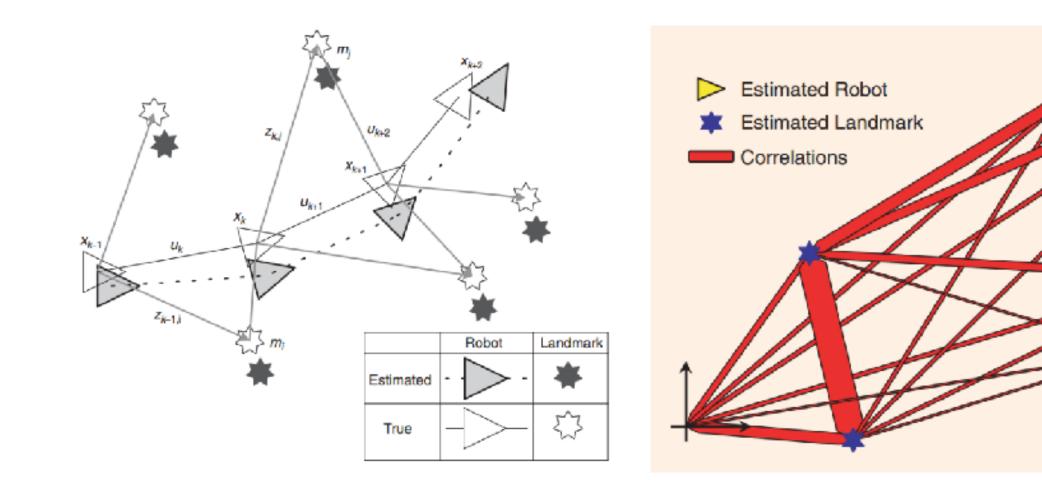
- Prediction (prediction step):
 - $p(x_t, m | z_{0:t}, u_{1:t}, x_0) = \sum_{t=1}^{t} P(x_t | x_{t-1})$
- Correction (update step):
 - $p(x_t, m | z_{0:t-1}, u_{0:t}, x_0) = \eta P(z_t | x_t, n)$
- We can solve the localization problem with the assumption that we know the map
 - $P(x_t | Z_{0:t}, U_{0:t}, m)$
- We can solve the mapping problem with the assumption that we know the location
 - $P(m | X_{0:t}, Z_{0:t}, U_{0:t})$

$$_{-1}, u_{1:t})P(x_{t-1}, m | Z_{0:t-1}, U_{1:t}, x_0)$$

$$P(x_t, m | Z_{0:t}, U_{1:t}, x_0)$$

Interesting Features

- Robot observations of the relative landmark locations can be considered nearly coordinate frame
- Robot observations of the absolute landmark locations are less certain, because the absolute landmark location is strongly related to the robot's coordinate frame
- Because landmarks are correlated even unobserved landmarks can be updated, such that correlations are increased for every observation we make
- The accuracy of the relative map increases for more observations



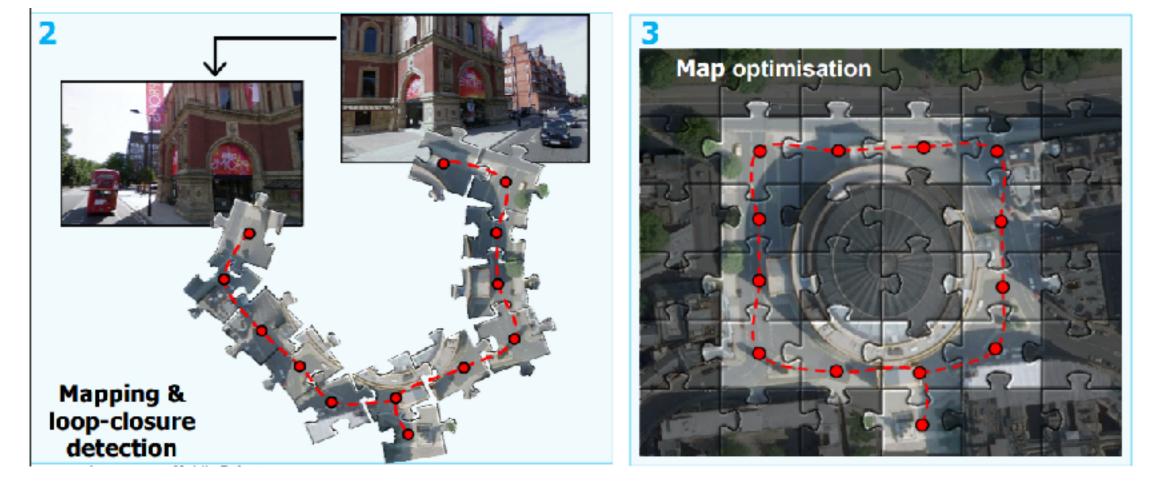
independent, because the relative landmark locations are independent from the robot's

Simultaneous Localization and Mapping Why is it hard?

- Map size
 - acquire the map
- Perceptual ambiguity
 - between different locations traversed at different points in time
- Cycles
 - Motion-cycles are particularly difficult to map ullet

• The larger the environment relative to the robot's perceptual range, the more difficult it is to

The more different places look alike, the more difficult it is to establish correspondence



SLAM solutions

- motion problem
 - Graph SLAM
 - EKF SLAM
 - Fast SLAM

Probability distribution over landmarks and the most recent pose (online SLAM)

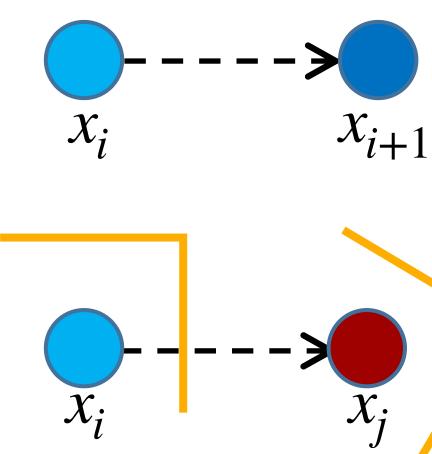
The trick is to find an appropriate representation for the observation and the

Global optimization: outputs the most likely map and trajectory

Graph SLAM

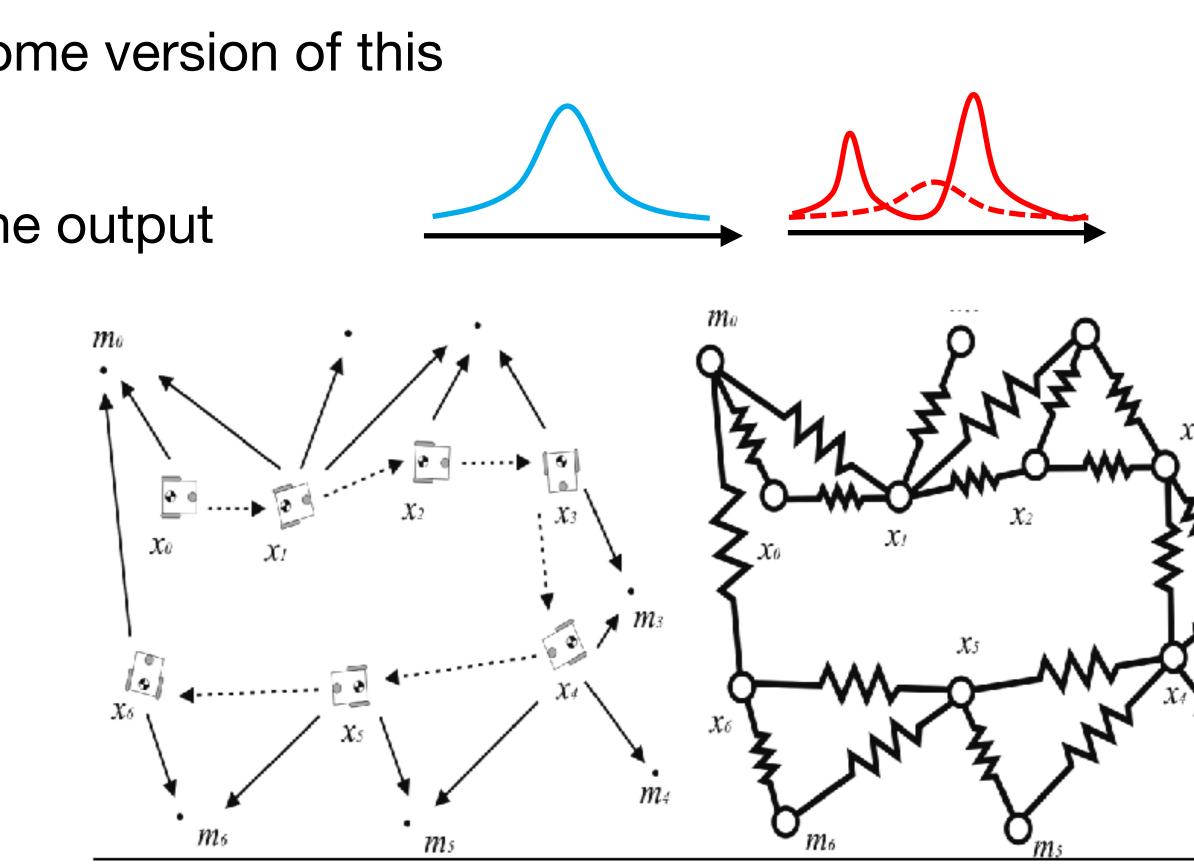
Graph SLAM

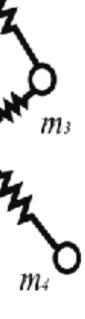
- Graph represents a set of objects where pairs of objects are connected by links encoding relations between them
- Create an edge if...
 - ... the robot moves from x_i to x_{i+1}
 - edge corresponds to odometry measurement
 - ... the robot observes the same part of the environment from x_i and from x_i
- Edges represent constraints
- Nodes represent the state (poses and landmarks)
 - Given a state, we can compute predicted observations
 - Find a configuration of the nodes so that the real and predicted constraints are as similar as possible
 - Minimize the Least Square Error over all constraints



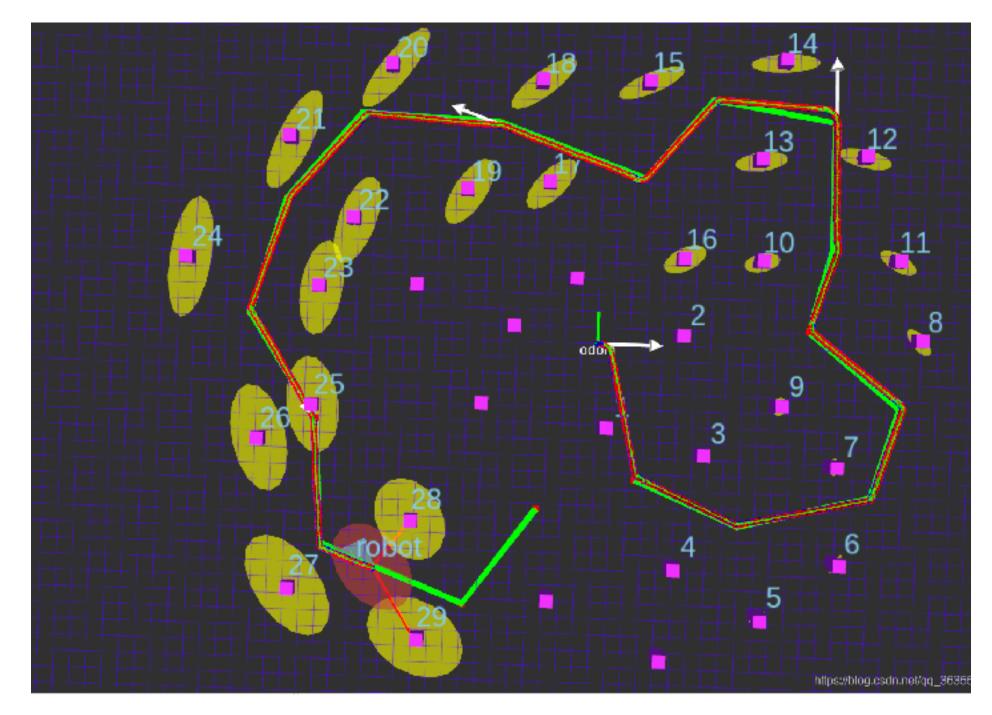
Graph SLAM

- Treat constraints (generated by motions and observations) as elastic springs
- Minimize the energy in all the springs
- Any modern SLAM implementation has some version of this
 - Pro: globally optimal
 - Con: BIG optimization problem, only one output
- Tricks
 - Combine poses over many time steps into single nodes to make the graph smaller
 - If you see the same landmark from several poses, you can get rid of the pose and add a stronger constraint between those landmarks



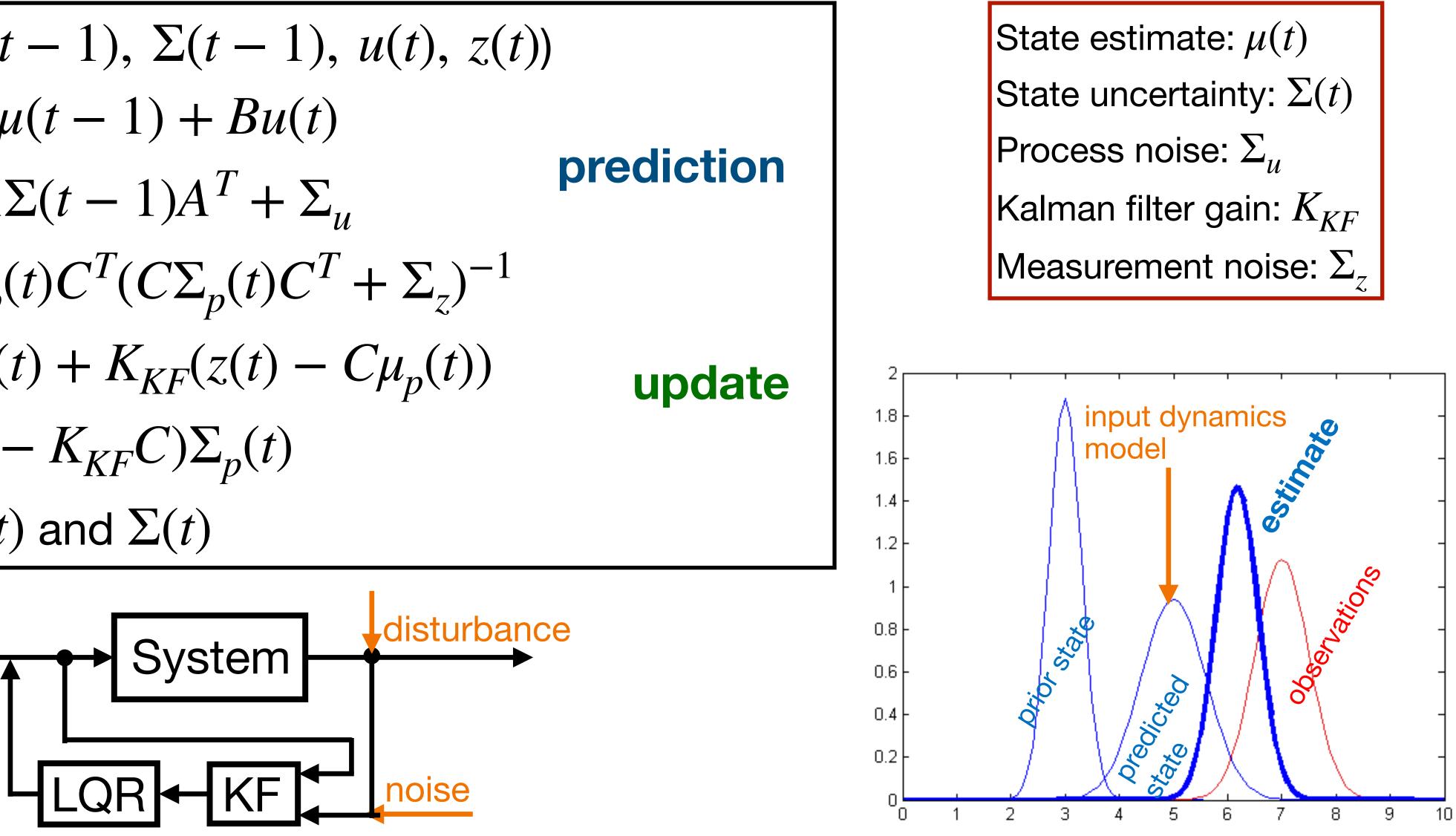


- Goal: Estimate $p(x_k, m \mid u_{1:k}, z_{1:N})$
- Assume all noise is Gaussian
- Track a Gaussian belief of the current state and landmarks
- Apply the Kalman Filter...

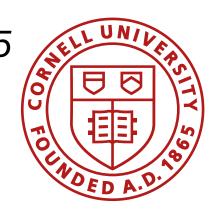


Kalman Filter

Kalman Filter ($\mu(t-1), \Sigma(t-1), u(t), z(t)$) 1. $\mu_p(t) = A\mu(t-1) + Bu(t)$ 2. $\Sigma_p(t) = A\Sigma(t-1)A^T + \Sigma_u$ 3. $K_{KF} = \Sigma_p(t)C^T(C\Sigma_p(t)C^T + \Sigma_z)^{-1}$ 4. $\mu(t) = \mu_p(t) + K_{KF}(z(t) - C\mu_p(t))$ 5. $\Sigma(t) = (I - K_{KF}C)\Sigma_{p}(t)$ 6. Return $\mu(t)$ and $\Sigma(t)$

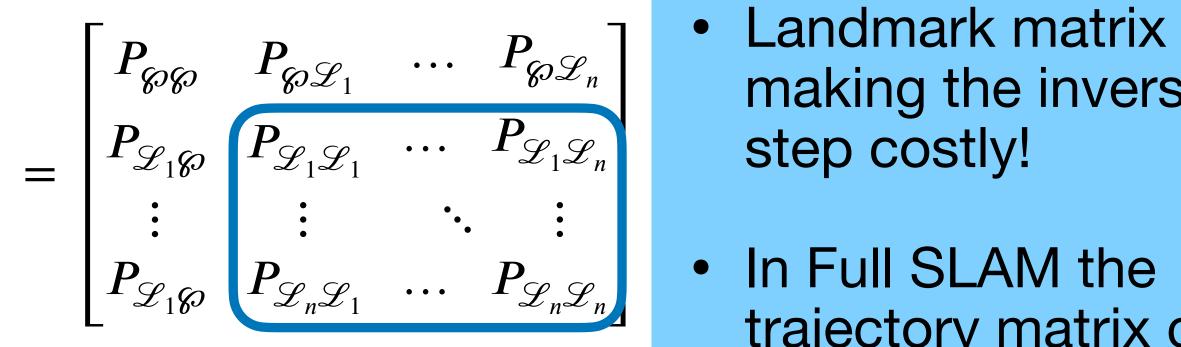


Fast Robots 2025



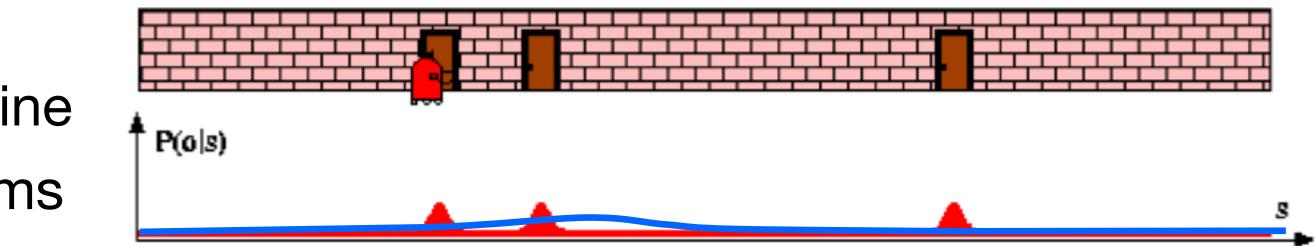
- Goal: Estimate $p(x_k, m \mid u_{1\cdot k}, z_{1\cdot N})$
- Assume all noise is Gaussian
- Track a Gaussian belief of the current state and landmarks
- Linearize around every state and run the Kalman Filter

$$x = \begin{bmatrix} \bar{\mathscr{G}} \\ \bar{\mathscr{M}} \end{bmatrix} = \begin{bmatrix} \mathscr{G} \\ \mathscr{L}_1 \\ \vdots \\ \mathscr{L}_n \end{bmatrix} \qquad P = \begin{bmatrix} P_{\mathscr{G}} & P_{\mathscr{G}} \\ P_{\mathscr{M}} & P_{\mathscr{M}} \\ P_{\mathscr{M}} & P_{\mathscr{M}} \end{bmatrix} = \begin{bmatrix} P_{\mathscr{G}} & P_{\mathscr{G}} \\ P_{\mathscr{M}} & P_{\mathscr{M}} \\ P_{\mathscr{M}} & P_{\mathscr{M}} \end{bmatrix} = \begin{bmatrix} P_{\mathscr{G}} & P_{\mathscr{G}} \\ P_{\mathscr{M}} & P_{\mathscr{M}} \\ P_{\mathscr{M}} & P_{\mathscr{M}} \\ P_{\mathscr{M}} & P_{\mathscr{M}} \end{bmatrix} = \begin{bmatrix} P_{\mathscr{G}} & P_{\mathscr{G}} \\ P_{\mathscr{M}} & P_{\mathscr{M}} & P_{\mathscr{M}} \\ P_{\mathscr{M}} & P_{\mathscr{M}} \\ P_{\mathscr{M}} & P_{\mathscr{M}} & P_{\mathscr{M} & P_{\mathscr{M}} \\ P_{\mathscr{M}} & P_{\mathscr{M}} & P_{\mathscr{M} & P_{\mathscr{M}} \\ P_{\mathscr{M}} & P_{\mathscr{M}} & P_{\mathscr{M}} & P_{\mathscr{M}} & P_{\mathscr{M}} \\ P_{\mathscr{M}} & P_{\mathscr{M}} & P_{\mathscr{M}} & P_{\mathscr{M} & P_{\mathscr{M}} & P_{\mathscr{M}} & P_{\mathscr{M} & P_{\mathscr{M}} & P_{\mathscr{M}} & P_{\mathscr{M}} & P_{\mathscr{M} & P_{\mathscr{M}} & P_{\mathscr{M}} & P_{\mathscr{M} & P_$$



- Landmark matrix grows, making the inversion
- trajectory matrix grows even faster

- Goal: Estimate $p(x_k, m \mid u_{1:k}, z_{1:N})$
- Assume all noise is Gaussian
- Track a Gaussian belief of the current state and landmarks
- Linearize around every state and run the Kalman Filter
- Pros
 - Super easy, well understood, runs online
 - Works well for low-uncertainty problems
- Cons
 - Works poorly for high-uncertainty problems
 - States must be well-approximated by Gaussians

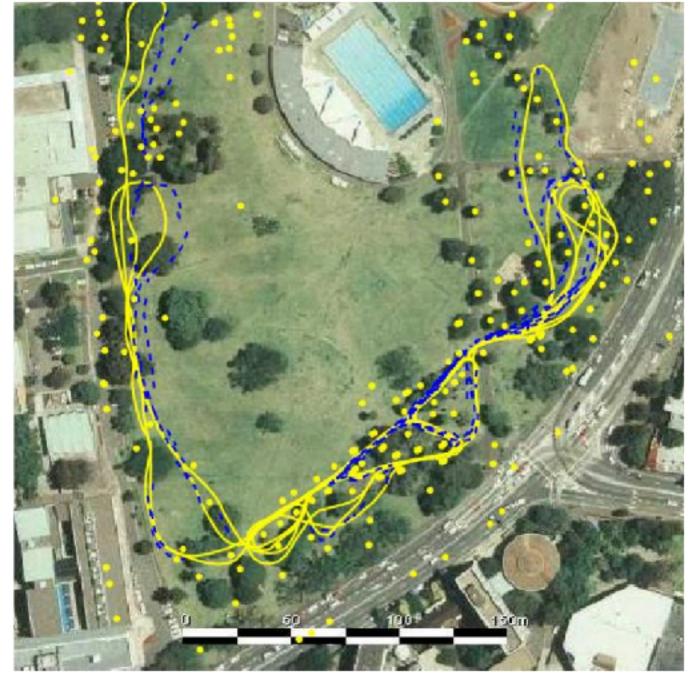


- Half sample-based solution
 - Particle filter
 - Every particle has its own version of the map with a given trajectory
- Half analytical solution
 - Landmark-based
 - Each pose and map of independent features is updated analytically through EKF
 - Grid-based map
 - Occupancy of each grid cell is estimated by GPS **Bayes Filter**

Victoria Park dataset University of Sydney

FastSLAM

4km traverse 100 particles <5m RMS position error

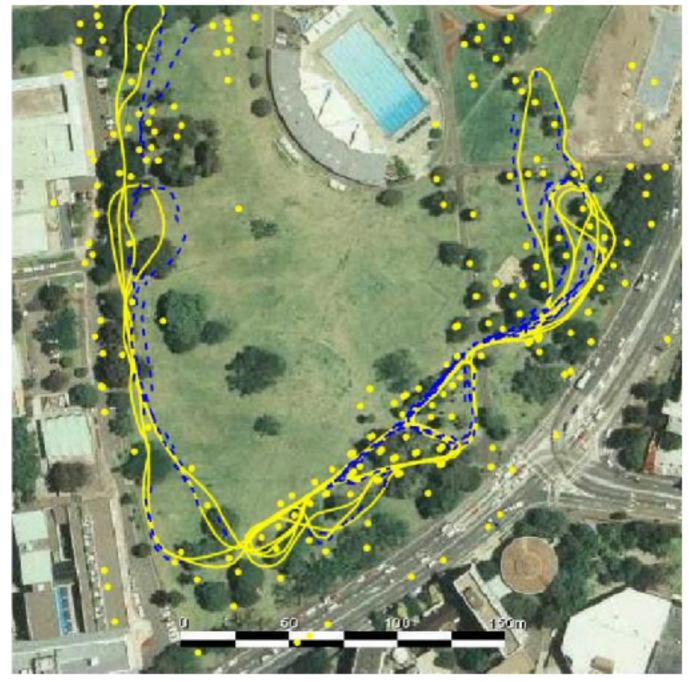


- Key idea: factorize the posterior
 - $p(x_{1\cdot k}, m \mid z_{1\cdot k}) = p(m \mid x_{1\cdot k}, z_{1\cdot k})p(x_{1\cdot k} \mid z_{1\cdot k})$
- $p(x_{1:k} | z_{1:k})$: pose estimation is approximated by the Particle Filter (can represent multiple hypotheses)
- $p(m \mid x_{1:k}, z_{1:k})$: classic mapping problem, approx using EKF (efficient at representing belief in high dimensions)
- Outcome is a Marginalized Particle Filter (MPF)
 - Each particle is a pose trajectory with an attached map corresponding to mean and covariance of each GPS landmark

FastSLAN

4km traverse 100 particles <5m RMS position error

Victoria Park dataset University of Sydney



- Distribution is estimated by a fixed number of particles
 - Each particle, k, contains an estimate of robot path and the mean and covariance of each of the n features

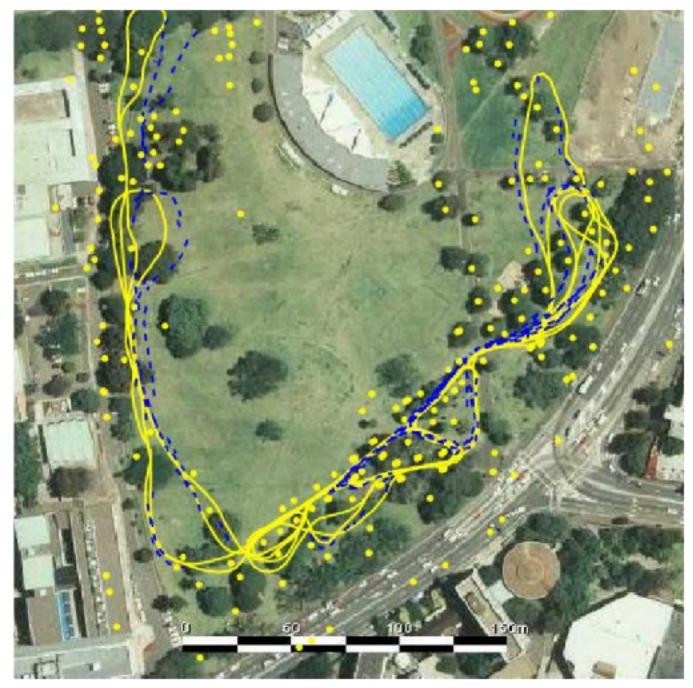
•
$$P^{[k]}(x_t^{[k]}; \mu^{[k]}, \Sigma_1^{[k]}; \dots \mu^{[k]}, \Sigma_n^{[k]})$$

- **Step 1:** Update particle trajectory (motion model)
- **Step 2:** Update particle landmarks with EKF (sensor model)
 - Linearize the observation model at $(x_t^{[k]}, m)$
 - Only update associated landmarks
- Step 3: Update weights based on $p(z_t | x_t^{\lfloor k \rfloor}, m^{\lfloor k \rfloor})$
- **Step 4:** Resample distribution

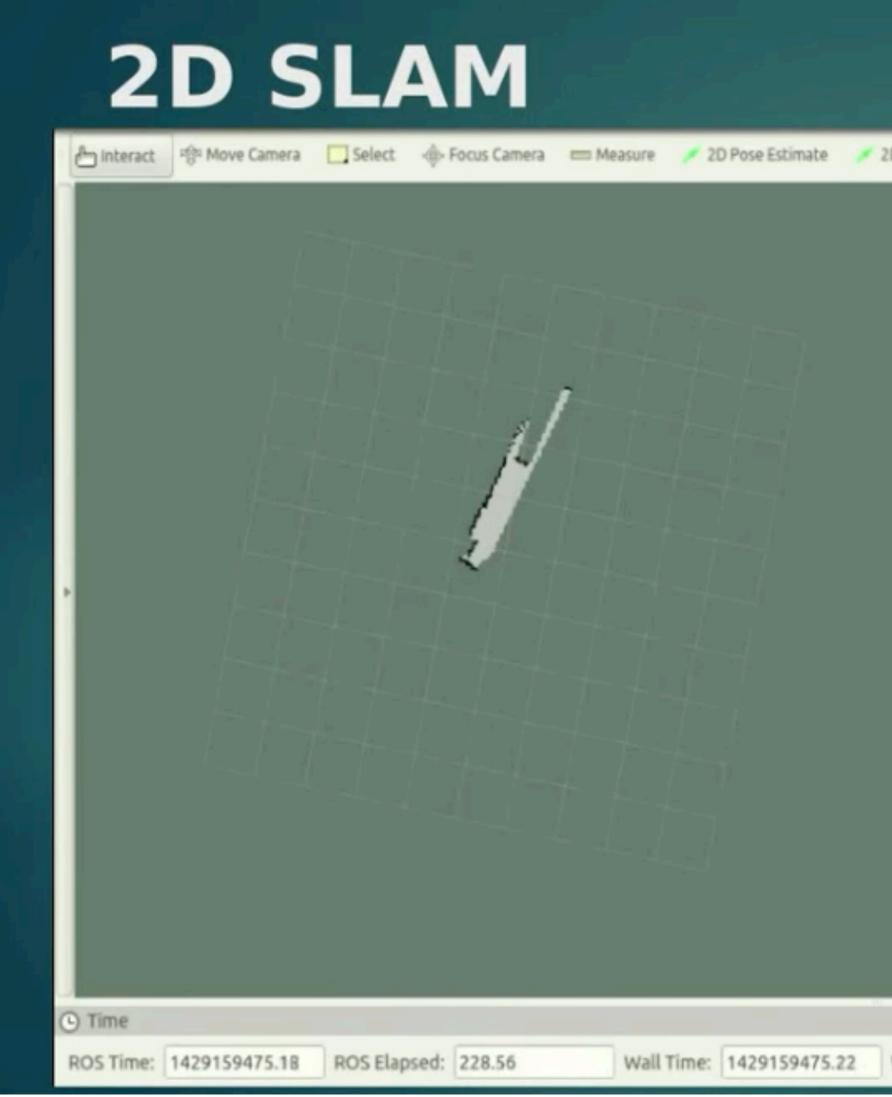
GPS **FastSLAN**

4km traverse 100 particles <5m RMS position error

Victoria Park dataset University of Sydney



SLAM State of the Art



<text></text>				T	
	[RUNNING] [RUNNING] [RUNNING] [RUNNING] [RUNNING] [RUNNING] [RUNNING] [RUNNING] [RUNNING] [RUNNING] [RUNNING] [RUNNING]	Bag Time: Bag Time:			
Wall Elapsed: 228.56			Save Remove Exp	Rename	

https://www.youtube.com/watch?v=6pRAhfBMW8w

Play (k)

0:36 / 2:32

https://www.youtube.com/watch?v=ufvPS5wJAx0

- Robotics
 - 3D cameras with depth maps and high frame rates and resolution
 - Dense 3D models of the world
 - Uses ROS and deep learning to recognize features
 - Come built-in in a range of robots
 - Inherent to e.g. the RealSense tracking cameras
- 3D scanning/ reconstruction
- Virtual and augmented reality

