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Fast Robots 2025 -

Class Action Items

 |Lab 10: localization (sim) starts today!

 The lab is graded S/U (all of the code is already posted on previous
websites)

* |f you do get an unsatisfactory, you will need to redo it.
* About to send a bunch of google forms your way

 ECE Robotics Day availability (if you are unavailable it’'s because of another
course conflict)

| ab 8 votes on stunts and bloopers

e This is the last technical content lecture of the course!
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Lab 10 Localization

* This lab is graded S/U

e Tasks

* Read the full lab and the notebook (before you show up to lab)
* Perform grid localization for the sample trajectory
* Video demo

* Discuss:
* Control
 Motion model and the prediction step
 Sensor model and the update step
 Choosing parameters, effect of changing parameters
 Ways to mitigate computational load
 Evaluate the Bayes Filter
 Evaluate how well this will work on your robot
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for large workspaces =
1. Algorithm Bayes Filter (bel(x,_), u,, z,) :

2. for all x, do
3. b_el(xt)

th_l px|u, x,_y) bel(x,_)

4. bel(x) = n p(z | x,) bel(x)

5. end for

=

return bel(x,)




Fast Robots 2025

Monte Carlo Localization

 Non-parametric approach based on Particle Filters
 Model the distribution by samples
* Prediction step
 Draw from the samples
 Move forward based on motion model
 Update step
* Weigh samples by their importance

e Sensor model

 Resample based on their weight

 The more samples we use, the better the estimate!
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Monte Carlo Localization

 Non-parametric approach based on Particle Filters

 Model the distribution by samples

1. Algorithm Bayes Filter (bel(x,_,), u,, z,) :

2. for all x, do /Draw x; from p(x, | u, xti—l)

3. bel(x) =X, p(x|u, x,_y) bel(x,_;) «— Prior samples

4. bel(x) = n p(z,| x,) bel(x,)

> end for \Importance factor wti x p(z,|x,)
6. return bel(x,)
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Monte Carlo Localization

f[(x)
samples

1 12
X «— — rand( — o, 0
22} (-0,0)

T

LRI RATIY L1 1

 How do you obtain samples from an arbitrary
distribution?

e Closed form solution for a uniform
distribution

probability / weight

e Closed form solution for a Gaussian
distribution f(x)

samples

probability / weight

LT AR T 1
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Monte Carlo Localization

f[(x)
samples

X — — Zrand(—a o)

/\

weight

 How do you obtain samples from an arbitrary
distribution?

e Closed form solution for a uniform

probability /

distribution . \IHIIIIIH\III ARt | |
* Closed form solution for a Gaussian
distribution Sroposal(x)
Y= arget(x)
Use a proposal distribution to generate samples £, tsample;\
from the target distribution z -\

* Account for differences using a weight

probability
\
\
\
\
|
/
/
/
/

» W = target/ proposal




Monte Carlo Localization

Fast Robots 2025

 Each particle, J, is a pose hypothesis
* Proposal distribution from the motion model L:
° xt[]] ~ PO X g, ) j
e Correction via the observation model :
. target(xt[j]) &
. Wt[J] = = p(z, | x,) i
proposal(x,;’") -
* Resample H:

Particlg_ﬂlter(&’t 1, Uy, 2t

Xy =X =1
for 9 =1 to J do
sample x;" ~ p(xy | we, x; )
u’,[J | =plz: | @ 1
¥ ¥ [ nlJ /1
Xf — :Yf -+ Ly, Wy >

endfor

for 1 =1 to .J do
draw 1 € 1,...,J with probability o w
add x L'] to X,

endftor

return A

[7]

f

« Draw sample 1 with probably Wt[j] and repeat J
times

https://www.cs.uml.edu/~holly/teaching/4510and5490/fall2018/l_ecture-Particle-Filters.pdf



https://www.cs.uml.edu/~holly/teaching/4510and5490/fall2018/Lecture-Particle-Filters.pdf
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Monte Carlo Localization

https://www.cs.uml.edu/~holly/teaching/4510and5490/fall2018/l ecture-Particle-Filters.pdf



https://www.cs.uml.edu/~holly/teaching/4510and5490/fall2018/Lecture-Particle-Filters.pdf
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Monte Carlo Localization

 How would you deal with a kidnapped robot?

 Randomly insert samples proportional to the average likelihood of the

particles
L { » Pros
." jf _ ‘._ D e ’ | |
70 |  Works well for high-uncertainty
;" scenarios
 Much more efficient than grid
cells
 Cons

» Scales poorly with higher
dimensional workspaces




Brief intro to SLAM




Related terms

o State estimation

e Localization Inferring a location given a map

» Mapping Inferring a map given a location

« SLAM Learning a map and locating the robot simultaneously
* Navigation

* Motion planning



Related terms

|
'\l

« State estimation
* |Localization
 Mapping

« SLAM

* Navigation

 Motion planning

Il Indoors

Undersea
‘/.’; E

-




Given all we have learned...

* Transformation matrices
e Sensors and actuators (and probabilistic models)
* Controllers (PID, LQR)
e Observers (KF) Include the map into the state
 Mapping
* Localization
* Bayes Filter and grid-localization Add grid-occupancy
e Particle Filter Let particles represent both pose and map

» Graph Search and Planning ... how would you implement SLAM?

(where could your estimate of the map fit in?)



Given all we have learned...

 Markov localization in a grid
* | ocalization: estimate your cell pose within the map

 Mapping: estimate if cells are occupied or not
* Every grid cell is a random variable

« SLAM: estimate pose and if cells are occupied or not

 100x100 grid cells (pretty small map)
e |Localization: (X, vy, theta) = 100x100x100 states

 Map: (x,y) = 10,000 staes
e SLAM 100x100x100x10,000 states

 Same issue for particle filters...

 Balance parametric and non-parametric approaches

Posterior Map

EEEEEEEER

i p(mx,ylz) Fl

Posterior

p(mx,ylz) =

Measurement Prior Map
Model

p(zlm, ) —n (mx'y) |

Likelihood Prior

p(z|my,)p(my,)
p(z)

Evidence




Why is SLAM hard?

 Robot pose/path and map are both unknown (not independent)

« Map and pose estimates are correlated

¥ ¥ X
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Why is SLAM hard?

 Robot pose/path and map are both unknown (not independent)

« Map and pose estimates are correlated



Why is SLAM hard?

 Robot pose/path and map are both unknown (not independent)
« Map and pose estimates are correlated

 (Good data association is key



Why is SLAM hard?

 The mapping between observations and the map is unknown

* Picking the wrong data association can cause map divergence
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Trilateration using range measurements
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Trilateration using range measurements

!
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« State estimation
* |Localization
 Mapping

« SLAM

* Navigation

 Motion planning

Related terms

e Given
* Control inputs
U,,={u;,u,,...u.}
* Relative observations
Z=1{z4,2,...2,}

« Compute

 Map of the environment
m={my,m,,...m, |

 Robot path (seq. of poses)
X()k — {XO, xl, o Xk}

* Error in pose
 Error in observation
* Error in mapping
 Errors accumulate
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Simultaneous Localization and Mapping

Graphical model

e Nodes are random variables @ ° @

e Directed edges are variable dependencies

e (Gray nodes: observed or directly measured
variables OJFNOIED
 White nodes: inferred latent variables @ a @




SLAM Representations

e Grid maps or scans

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & ,
Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;...] ar

* Landmark-based LT
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Simultaneous Localization and Mapping

e Nodes are random variables

* Directed edges are variable dependencies

e Gray nodes: observed or directly measured
variables

e White nodes: inferred latent variables

o Full SLAM: compute a joint posterior over the
whole path of the robot and the map




Simultaneous Localization and Mapping

e Nodes are random variables @ °

e Directed edges are variable dependencies

e Gray nodes: observed or directly measured
variables @ @ @
 White nodes: inferred latent variables @ a

e Full SLAM: compute a joint posterior over the @
whole path of the robot and the map

» Online SLAM: compute a posterior over the plx, m|zy., u.,)
current pose along with the map




Simultaneous Localization and Mapping

* Prediction (prediction step):
o (X, M| 2o Uy Xo) = 21 PO [ Xy, uy )P Xy, M| Zg g Uy Xp)

* Correction (update step):
o p(Xp M| Zoy 15 Ug.ps Xo) = NP2, | X, M)P(X;, m | Zyy Uy Xp)

* \We can solve the localization problem with the assumption that we know the map
» P(x,| Zy.p Uy m)

* We can solve the mapping problem with the assumption that we know the location

° P(m ‘XO:P ZO:t? U():t)
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coordinate frame

Robot observations of the absolute landmark locations are less certain, because the
absolute landmark location is strongly related to the robot’s coordinate frame

Because landmarks are correlated even unobserved landmarks can be updated, such that
correlations are increased for every observation we make

The accuracy of the relative map increases for more observations

Interesting Features

Robot observations of the relative landmark locations can be considered nearly
independent, because the relative landmark locations are independent from the robot’s

[>> Estimated Robot
¥ Estimated Landmark

@ Correlations

Mapping &
loop-closure

detectionA -




Simultaneous Localization and Mapping
Why is it hard?

* Map size

* The larger the environment relative to the robot’s perceptual range, the more difficult it is to
acquire the map

* Perceptual ambiguity

 The more different places look alike, the more difficult it is to establish correspondence
between different locations traversed at different points in time

 (Cycles

* Motion-cycles are particularly difficult to map

Mapping &
loop-closure
detection




SLAM solutions

* The trick is to find an appropriate representation for the observation and the
motion problem

 Graph SLAM Global optimization: outputs the most likely map and trajectory

* EKF SLAM Probability distribution over landmarks and the most recent
e Fast SLAM pose (online SLAM)



Graph SLAM



Graph SLAM

 Graph represents a set of objects where pairs of objects are connected by
links encoding relations between them

 Create an edge fif...

e ...the robot moves from X tox; 4

e edge corresponds to odometry measurement

» ... the robot observes the same part of the environment from x; and from .x;

@9

* Edges represent constraints X; X;

 Nodes represent the state (poses and landmarks)
* Given a state, we can compute predicted observations

* Find a configuration of the nodes so that the real and predicted constraints
are as similar as possible

 Minimize the Least Square Error over all constraints



Graph SLAM

Treat constraints (generated by motions and observations) as elastic springs

Minimize the energy in all the springs

Any modern SLAM implementation has some version of this

* Pro: globally optimal
* Con: BIG optimization problem, only one output

Tricks

 Combine poses over many time steps
iInto single nodes to make the graph
smaller

* |f you see the same landmark from
several poses, you can get rid of the
pose and add a stronger constraint
between those landmarks




EKF SLAM



EKF SLAM

« Goal: Estimate p(x;, m | u;.;, Z{.n)
e Assume all noise is Gaussian
e Track a Gaussian belief of the current state and landmarks

 Apply the Kalman Filter...
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Kalman Filter

Kalman Filter (u(r — 1), 2(t — 1), u(z), z(¢)) State estimate: 4(7)

1. /’tp(t) = Au(t — 1) + Bu(t) State uncertainty: 2(7)

rediction Process noise: 2,
. Zp(l‘) = A2(1 — I)AT + 2 P Kalman filter gain: Ky

. KKF — EP(t)CT(CZp(t)CT 4+ ZZ)—l Measurement noise: 2.
- (@) = py(0) + Kgp(z2(t) — C, (1)) update

CS() = (= KepOZ,(0)
. Return u(t) and 2(7)




EKF SLAM

« Goal: Estimate p(x;, m | u;.;, 2;.x)
e Assume all noise is Gaussian

e Track a Gaussian belief of the current state and landmarks

* Linearize around every state and run the Kalman Filter

| andmark matrix grows,
making the inversion
step costly!

* In Full SLAM the
trajectory matrix grows
even faster




EKF SLAM

» Goal: Estimate p(x;, m | uy.;, 2;.8)

* Assume all noise is Gaussian

* Track a Gaussian belief of the current state and landmarks
* Linearize around every state and run the Kalman Filter

* Pros
* Super easy, well understood, runs online
 Works well for low-uncertainty problems

 Cons
* Works poorly for high-uncertainty problems
o States must be well-approximated by Gaussians
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Half sample-based solution

o Particle filter

Every particle has its own version of the map with

a given trajectory Victoria Park dataset
University of Sydney

» Half analytical solution
 Landmark-based

Each pose and map of independent features is
updated analytically through EKF

Grid-based map
» Occupancy of each grid cell is estimated by aps

Bayes Filter
4km traverse h

100 particles
<5m RMS position error j‘ﬁﬁ,,&




Fast SLAM

Key idea: factorize the posterior

° p(xlzk’ m ‘ Zlzk) — p(m ‘ A1k Zl:k)p(xlzk ‘ Zl:k)

p(x1.. | z1.1): pose estimation is approximated by the
Particle Filter (can represent multiple hypotheses)

p(m|x,..,zy..): classic mapping problem, approx using
EKF (efficient at representing belief in high dimensions)
Outcome is a Marginalized Particle Filter (MPF)

 Each particle is a pose trajectory with an attached
map corresponding to mean and covariance of each

landmark

GPS

4km traverse
100 particles § 5\
<5m RMS position error ¢4+ |

Victoria Park dataset
University of Sydney
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Fast SLAM

* Distribution is estimated by a fixed humber of particles

 Each particle, k, contains an estimate of robot path and the
mean and covariance of each of the n features

. PR, 0 S0 8 Ik

» Step 1: Update particle trajectory (motion model)

e Step 2: Update particle landmarks with EKF (sensor model)
« Linearize the observation model at (xt[k], m)
* Only update associated landmarks

» Step 3: Update weights based on p(z; | xt[k], m[k])

GPS
« Step 4: Resample distribution

4Kkm traverse

100 particles § 40 5

<5m RMS position error ¢4 . |

Victoria Park dataset
University of Sydney

) Bl 0

#
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SLAM State of the Art



State of the Art in SLAM
2D SLAM

't) interact S Move Camera : : o | d < 20 Nav Coa

RéMove Réename

(© Time

ROSTime: 1429159475.18 ROS Elapsed: 228.56 wall Time: 1429159475.22 wall Elapsed: 228.56 Experimental

https://www.youtube.com/watch?v=6pRAhfBMW8w



https://www.youtube.com/watch?v=6pRAhfBMW8w

State of the Art in SLAM

Play (k)

P Pl o) o036/232 @« 6O & -

https://www.youtube.com/watch?v=ufvPS5wJAx0


https://www.youtube.com/watch?v=6pRAhfBMW8w

State of the Art in SLAM

* Robotics
3D cameras with depth maps and high frame rates and resolution
* Dense 3D models of the world
* Uses ROS and deep learning to recognize features
 Come built-in in a range of robots

* |Inherent to e.g. the RealSense tracking cameras

| | |
* 3D scanning/ reconstruction .
e s

* Virtual and augmented reality




State of the Art in SLAM

Multi-Session Scanning with RTAB-Map Tango
Phan2Pro Phone (10x)




