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EdDiscussion posts...

Important posts in the recent days...
* Post #74 (Solution example for lab 5)
* Post #77 (Battery)

USB/LiPo Charger Power Source Select 3.3V Requlator

4

GND 1

Charge rate set to 500mA
- GNDGND GND
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String serverResponse;
String date, city;
void loop () {

EdDiscussion posts...

. serverResponse = downloadFromServer() ;
Important posts |r.1 the recent days... date = extractDate (serverResponse)
e Post #74 (Solution example for lab 5) city = extractCity (serverResponse);

* Post #77 (Battery)
* Post #78 (memory)

 FLASH
e Arduino IDE reports this "
* SRAM K
KABOOM!!!

‘rd
a
D(:l

)
- Heap O

 Static data/global variables

* Heap (dynamically allocated data)

» Stack (local variables, interrupt calls,
function calls)

O
) O

* Allocate fixed memory Heap o = —

* You can check: freeMemory() Static Data Static Data Static Data

Fast Robots Normal S.RAM Fragmented Heap Stack Crash!
Operation
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Based on “Control Bootcamp”, Steve Brunton, UW
Linear Systems

* Linear systems review

* Eigenvectors and eigenvalues
e Stability

* Discrete time systems

* Linearizing non-linear systems

* Controllability x = Ax+Bu
* LQR
* Observability
Q This should look familiar from..
« MATH 2940 Linear Algebra
6  ECE3250 Signals and systems
X= [Q] * ECE5210 Theory of linear systems
‘ * MAE3260 System Dynamics
e etc...



https://www.youtube.com/watch?v=Pi7l8mMjYVE

Linear Systems — “review of review”

* Linear system: x = Ax
* Solution: x(t) = e4tx(0)
* Eigenvectors: T=1[& & ... &
A, 0
: _ Ay
* Eigenvalues: D =
L0 Ap
* Linear transform: AT =TD
* Solution: eAt = TeltT1
* Mapping from x to z to x: x(t) = TeP'T~1x(0)
 Stability in continuous time: A = a + ib, stable iff a<0
* Discrete time: x(k +1) = Ax(k), A = e4At

e Stability in discrete time: A" = R™e'™Y, stable iff R<1
 Method for linearizing non-linear systems




Based on “Control Bootcamp”, Steve Brunton, UW
Linear Systems

* Linear systems review

* Eigenvectors and eigenvalues
e Stability

* Discrete time systems

* Linearizing non-linear systems

* Controllability x = Ax+Bu
* LQR
* Observability
Q This should look familiar from..
« MATH 2940 Linear Algebra
6  ECE3250 Signals and systems
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‘ * MAE3260 System Dynamics
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https://www.youtube.com/watch?v=Pi7l8mMjYVE
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Linearizing Non-Linear Systems

Basic Steps to linearize a nonlinear system
1. Find some fixed points
« X s.t.f(kx)=0
e (basically, points where the system
doesn’t move)
2. Linearize about X

[ ] D_f|_= %
Dx ' 6xj

 |fyouzoom in on X, your system will
look linear!

-X) = f(X) + ( ‘)+D2f< )’ D3f< )?
(x—x)=f(x Dx|,gx X szlx—x—x +D3x|x_x_x 4.

pi =LA = Ak = Abx

Fast Robots




Linearizing Non-Linear Systems

Basic Steps to linearize a nonlinear system
1. Find some fixed points
« X s.t.f(kx)=0
e (basically, points where the system
doesn’t move)
2. Linearize about X
oLy - [
Dx '* 0xj
 |fyouzoom in on X, your system will
look linear!

* Good control will keep you close to the fixed
point, where your model is valid!

pi=2Lax = A% = Abx

Fast Robots
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Linearizing Non-Linear Systems

Basic Steps to linearize a nonlinear system
1. Find some fixed points
« X s.t.f(kx)=0
2. Linearize about x
oLy - [
Dx 'X

ox j Center Line !I ; Thrust Line

gimbal angle —! a..__

center of ' tordue
gravity q

(ca)

gimbal angle
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Linearizing Non-Linear Systems ] :
x=f(x)> x=Ax
Basic Steps to linearize a nonlinear system

1. Find some fixed points

e Xs.tf(®)=0 Eqg. of motion
2. Linearize about x « T =—mgLsin(0)
. Dfy _ |9 )
Dxlx_laxj e T7=1]60

« 10 = —mgLsin(6)
* Point mass inertia
e [ =ml?
e mL?0 = —mgLsin(6)
¢ 0= —%sin(@) —50

k\\\\\\\\\\\\\\\K\\\\\\\\\\\\\\\Q
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Linearizing Non-Linear Systems

Basic Steps to linearize a nonlinear system
1. Find some fixed points

e xs.t. f(X)=0 lexl

2. Linearize about x X2
. D_f|__ ofi

Dx X axj — [6

6

k\\\\\\\\\\\\\\\K\\\\\\\\\\\\\\\Q

x = f(x)

= x = Ax

6 = —%sin(@) — 56

Zl=

Zl=

X2
—sin(x,) — 6x,

|

|
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Linearizing Non-Linear Systems ,
=f(x)= x=Ax

Basic Steps to linearize a nonlinear system

1. .Findfsczr;.e ;z;c)i F;Oionts - [xll 6 = —%sin(H) — 66
2. Linearize about.f X2 d
. %If = [Z—,];] _ [g] E[ ] [ Sln(xl) 5x2]

k\\\\\\\\\\\\\\\K\\\\\\\\\\\\\\\Q

il =5

Df af1/ax1 afl/axz
Dx afZ/a afZ/a
X1 X,

D_f B : 0 | ]
Dx |—cos(x;) —6
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Linearizing Non-Linear Systems

x=f(x)> x=Ax

Basic Steps to linearize a nonlinear system
1. Find some fixed points

e xs.t. f(X)=0 v — [xll 0

2. Linearize about & X2
. D_f|_= ofi
Dx '% axj

k\\\\\\\\\\\\\\\K\\\\\\\\\\\\\\\Q

—%sin(@) Y.

:[9 %[ ] [ sm(xl) 6x2]

il =5

0 1
Agown = 0 J
d [_]; —5] D_f ) fl/axl fl/axz
Addown = —0 L i Dx afz/a afZ/
0 1 : x -
Aup _ [1 _5] D_f B - O 1 ]
Ayp = £1 Dx |—cos(x;) —6




Linearizing Non-Linear Systems ] :
x=f(x)> x=Ax
Basic Steps to linearize a nonlinear system

1. Find some fixed points - 9 . :
CE st f() =0 N I A
2. Linearize about i X2
or, - [on]
Dx ' 6xj — [6
6
R HH
0 1
Adown — -1 _5]
Adown = —0 + i
0 1
Ayp = [1 —5]

o

<

=
N
+
—
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Controllability x = Ax +Bu R™
XE€

* |Isthe system controllable?

nxm
* How do we design the control law, u? AeR
ueRY
BeR"*4
system
u 5 y = x}
() x = Ax + Bu
—Kx [€

<~/ Fast Robots 18




Controllability x = Ax +Bu

xeR™
* |Isthe system controllable? . AE]Rnxm
* How do we design the control law, u? x = Ax — BKx
. ueR4
x =(A—BK)x
BeR™*4
system
u 5 y = x}
() x = Ax + Bu
—Kx |[€

<~/ Fast Robots 9



Controllability x = Ax +Bu

n
 What determines whether or not a system is xE]Rnxm
? :

controllable? | ¥ = Ax — BKx AelR
* A system is controllable, if you can steer q

our state x anywhere you want in R" : uelR

Y YWRETEY x = (A—BK)x
BeR"™*4
system
u 5 y = x}
() x = Ax + Bu
—Kx [€

<~/ Fast Robots 20



Controllability x = Ax +Bu

n
 What determines whether or not a system is XERnxm
? .

controllable.. | ¥ = Ax — BKx AV

* A system is controllable, if you can steer q
our state x anywhere you want in R" . ueR

Y YWRETEY x = (A—BK)x
BeR"*4

sy Fast Kobots



Controllability x = Ax +Bu

n
 What determines whether or not a system is xE]Rnxm
? :

controllable? | ¥ = Ax — BKx AelR
* A system is controllable, if you can steer q

your state x anywhere you want in R" o - uelR

e Matlab >> rank(ctrb(A,B)) X = (A BK)X
BeR"™*4
system
u 5 y = x}
() x = Ax + Bu
—Kx |[€

<~/ Fast Robots =



Controllability .
x = Ax +Bu n
xeR

e (Can you control this system?

) N . nxm
1. [x?] — [1 0” '+ [O]u % = Ax — BKx  A€R
) 0 211Xz 1 q
* There’s no way to directly/indirectly affect x; L ueRr
* What could you change to make it controllable? X = (A B BK)X BeR™¥4

 Add more control authority!

N B | N R P

23




Controllability . _
x = Ax +Bu n
xeR

e (Can you control this system?

’ X . nxm
Ll =lo 2Bl + [ % = Ax — BKx AR
X2 0 211X 1 q
* There’s no way to directly/indirectly affect x; . uelR
* What could you change to make it controllable? X = (A I BK)X BeR™¥4

 Add more control authority!

N B | N R P

e (Can you control this system?

s [a]=[o sG]+ [l

e Systems with coupled dynamics can be controllable...
* If Aistightly coupled, you can get away with a simple
B and few sensors

<~/ Fast Robots 24



Controllability x = Ax +Bu

n
e (Can you control this system? xE]Rnxm
1-§1=(1) (2) x1+(1)]u % = Ax — BKx  A€R
]l 0y L (1 0] [ | ueRY
2 Xl Lo 2]lxa T 0 1] [UJ X = (A — BK)X X
] (1 111%1] [ BeR™*4
3 X1| _ 1 1711”*1 + 0]u
x5 ] 0 21L0X21 11

. Matlab >> ctrb(A,B)
* Controllability matrix
- C=[B AB A?B .. A" 'B]
* Iff rank(C) = n the system is controllable

25




Controllability

e (Can you control this system?

-
1. |7t

2.1 .| =

3.1..| =
Xy L

e Matlab>>c

* System 1:

—_o kO

1

0

011

2]

i

| X9 ]

trb(A,B)

* Controllability matrix
- C=[B AB A%B
* Iff rank(C) = n the system is controllable

_I_

_I_

_|_

HE

o 1l

hE

A"1B]

x = Ax +Bu
X = Ax — BKx
x =(A—BK)x

xeR"
AERnxm

uelR4

BeR™*4

26



Controllability x = Ax +Bu

n
e (Can you control this system? XERnxm
_ - —x L
1'?:(1) g x;+01” x = Ax — BKx AeR
A2 - - er
> K= 01 4 ”u1] : ueR”
] Tlo 2l b = (4= BK)x BeR™*4
3 -.X:l- _ 1 17 _xl_ + _Olu ¢
NEN 0 21L0x21 11

* Matlab >> ctrb(A,B)
* Controllability matrix

- C=[B AB A*B .. A" 'B]
* Iff rank(C) = n the system is controllable

e System1:C = [(1)

010+11_o
1oo+21]‘[

<%/ Fast Robots 27




Controllability Matrix and the Discrete Time Impulse Response

x = Ax + Bu, x € R
C=[B AB A?B .. A" 'B]
* Why does C predict controllability?!

e Discrete time impulse response: x(k + 1) = Ax(k) + Bu(k)
cu(0)=1 x(0)=0 (assume a single input actuator)

cu(1)=0 x(1) = Ax(0) + Bu(0) =B
e u(2)=0 x(2) = Ax(1) + Bu(0) = 4B
*u(3) =0 x(3)=A*B

= x(m) = Am1B

28
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Controllabillity and Reachability

x = Ax + Bu, x € R
C=[B AB A?B .. A" 1B]

1. The system is controllable
e iffrank(C) =n

* R, states that are reachable at time t
 R; = {£eR™ for which there is an input
u(t) that makes x(t) = &

e x=(A—-BK)x

¢ Rt:Rn

2. You can choose K to arbitrarily place the eigenvalues of your closed loop system

3. You can reach anywhere in R" in a finite amount of time and energy

30



Controllabillity and Reachability

x = Ax + Bu, x € R
C=[B AB A?B .. A" 1B]

1. The system is controllable
e iffrank(C) =n

* R, states that are reachable at time t
 R; = {£eR™ for which there is an input
u(t) that makes x(t) = &

v

e x=(A—-BK)x

¢ Rt:Rn

2. You can choose K to arbitrarily place the eigenvalues of your closed loop system

3. You can reach anywhere in R" in a finite amount of time and energy

31
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Controllability Gramians

We can test if the system is controllable
But not how easy it is to control

...or in which directions it is easier

How could you improve B?

kirstin@cornell.edu
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Controllabillity Gramian .
. x =Ax + Bu, x e R"

cx(© =eMx(0) +| ACVBu@dr =[5 4 AB .. A"IB]
0
>> rank(ctrb (A,Db))

il - >> [U,S,V] = svd(C, ° /
* Controllability Gramian [ ] svd ( econ’ )

« W, = foteATBBTeATTdT W, e RW*"
* Discrete time

- W, =~ CC

* Wi = AS

S %/ Fast Robots 33




Controllabillity Gramian
t

e x(t) = etx(0) +f eA=0) By (1)dt

0

e Controllability Gramian

+ W, = [ e4"BBTeA Tdr

* Discrete time

W, eR™"

x =Ax + Bu, x e R"

C=[B AB A%B .. A" 1B]
>> rank(ctrb (A, b))
>> [U,S,V] = svd(C, ‘econ’)
A I
12$;
A3$3 >
'

St

34



Controllabillity Gramian

. — — ———
. — Ty

By DLR, CC-BY 3.0, CC BY 3.0 de,

https://commons.wikimedia.org/w/index.php?curid=61072555
b

Fast Robots

x =Ax+ Bu, x € R"
C=[B AB A%B .. A" 1B]

>> rank(ctrb (A, b))
>> [U,S,V] = svd(C, ‘econ’)

Controllability for very high
dimensional systems?

Many directions in R" are
extremely stable - you only need
to control directions that impact
your control objective
Stabilizability

35



Controllabillity Gramian

. x =Ax + Bu, x e R"

cx(© =ehx(0) +| ACVBu@dr =[5 4 AB .. A"IB]
0]
>> rank(ctrb (A,Db))
Uu,s,v] = da(C, ’
e Controllability Gramian > | sve seon’)
+ W, = [, eATBBTeA *dr W eR™™ !
« W& =AE 426>
* We = cc’ A3¢3 >
» Stabilizability J
* A system is stabilizable iff all unstable eigenvectors of A A1éq

A are in the controllable subspace
_.*b Fast Robots 36



Linear Systems

* Linear systems review

* Eigenvectors and eigenvalues
e Stability

* Discrete time systems

* Linearizing non-linear systems
* Controllability

* LQR control

* Observability

Based on “Control Bootcamp”, Steve Brunton, UW

x = Ax+Bu

This should look familiar from..

« MATH 2940 Linear Algebra
 ECE3250 Signals and systems
 ECE5210 Theory of linear systems
* MAE3260 System Dynamics

e etc...
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https://www.youtube.com/watch?v=Pi7l8mMjYVE

Engineering Communications

e Discussion of webpages and online portfolios
* Led by Traci M. Nathans-Kelly

Fast Robots
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