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Lab 6: PID control

. Task A: Position control
. Benefit: Easiest

Bl 1000 Pl control
' Dead band = 35
Setpoint = 300
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Lab 6: PID control

e Task A: Position control
e Task B: Orientation control
. Benefit: Good startto lab 9

set point T
—>O—> PID > actuator [T

Sensor <J

fusion
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Lab 6: Closed-loop control (PID)

Objective

The purpose of this lab is to get experience with PID control. The lab is fairly open ended, you can pick

whatever controller warks best for your system. 4000-level students can choose between P, PI, PID, PD;

5000-level students can choose between Pl and PID controllers. Your hand-in will be judged upon your

Good examples from last year:
* QOrientation control

demonstrated understandi

your solution.

This lab is part of a series
choose to do either positig ®

very strained for time. The

* Position control

funl). Whatever you choos
for improving/speeding up

the coming weeks.
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r
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https://cei-lab.github.io/FastRobots-2023/Lab6.htm
https://kr397.github.io/ece4960-labs/lab6.html
https://bwagner2-git.github.io/lab6

Lab 6-8: PID control — Sensor Fusion - Stunt

 Task A: Position control
 Task B: Orientation control
Procedure
* Lab 6: Get basic PID to work
Do the pre-lab: you need good debugging scripts
Start simple and work your way up, then hack away...
e  Start slow (sampling rates, control frequency)
 Avoid blocking statements
Wind-up, derivative LPF, derivative kick
Motor scaling function
 Range of analogWrite: [0;255]
 Directionality
e Deadband
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Recap from ECE 3100 Intro to Probability and Inference

 Random variable
e X:O-R
The probability that the random variable X has value x
« P(X=x)orp)
* Probabilities sumto 1
e Y. PX=x)=1
* Probabilities are always greater than 0
« P(X=x)=0
* Joint distribution Y
e p(x,y)=P(X=xandY =y) |*= Mean

» Conditional probability * K=-9.97306mg
p(x,y) * std dev Accelerometer
©oplly) = 1467 « 0=7.0318mg X-axis
* Variance
° 0-2

Gaussian distributions
*  [utd]

* Symmetric
 Unimodal

e Sum to “unity”

Fast Robots



Conditional probability

p(x,y)
1467

+ plxly) =
* Robot/sensor example

* Exercise
 Two children, the older is female, what is
the probability that the second child is
female?
e 50%
 Two children, one is female, what is the
probability that the second child is female?
e 33%
 F-M, F-F, M-F, (M-M)




Recap from ECE 3100 Intro to Probability and Inference

 Random variable
e X:O0-R
The probability that the random variable X has value x:
e P(X =x)orp()
* Probabilitiessumto 1 « Independence

* L P =x)=1 * p(x,y) =p()p)
* Probabilities are always greater than O

X,
* P(X=x) 20 + paly) = pla) = 25D
* Joint distributionY - p(y) . :
. p(x,y) = P(X =xand Y = y)  |f XandY are conditionally independent given
* Conditional probability Z=z, then
p(x.y) * p(x,yl|z) = p(x|2)p(y|2)

© plaly) =22
Marginal probability
* p(x) =2y px|y)p(¥)
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Why consider uncertainty?

* Uncertainty is inherent in the world

* Five major factors
* Unpredictable environments
* Sensors

* Subject to physical laws
* Signal to noise ratio

Robot motion
* Noise, wear and tear, battery state, etc.

* Accuracy versus cost

Models

e Abstractions of the real world

Computation

* Real time systems

» Timely response versus accuracy

Fast Robots 11




Exercise

* |s this dress black and royal blue, or white and gold?

 Where does the uncertainty come from?
* blue and black under a yellow-tinted illumination (left)
* white and gold under a blue-tinted illumination (right)

12




Robot-Environment Model

Act
(unpredictable)

Sense
(noisy and limited)

13



Probabilistic Approach

“A robot that carries a notion of its own uncertainty and that acts accordingly
is superior to one that does not.”
- Probabilistic Robotics by Thrun, Burgard, Fox
* Probabilistic approaches in contrast to traditional model-based motion planning techniques or

reactive behavior-based motion:
* tend to be more robust to sensor and model limitations

* weaker requirements on the accuracy of the robot’s models

Is Robotics Going Statistics?
The Field of Probabilistic Robotics

Sebastian Thrun
Sdlool of Computer Science
e Mellon University
w.cs.cmu.edu/~thrun

draft, please do not circulate

Abstract

In the 1970s, most research in robotics presuppus:l the availability of exact models, of robots and
their environments. Little emphasis was placed on sensing and the intrinsic limitations of modeling
complex physical p I.hcmmcm Thi n the mid- ])M)s when the paradigm shifted tow ml
reactive tec capable sensors to generate robot control. Rr:]r_‘&.lmns
v  a o

of models
to emerge:

ers in this field. Since the mid-
his approach relies on statistical t mqu 0 sc'\m]csslv
The present article describes the basics of probabilistic Iuluh

and highlights some of its recent successes.
— 14
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Probabilistic Approach

+ Explicitly represent the uncertainty using probability theory

+ Accommodate inaccurate models

+ Accommodate imperfect sensors

+ Robust in real-world applications

+ Best known approach to many hard robotics problems

Fast Robots

Is Robotics Going Statistics?
The Field of Probabilistic Robotics

Sebastian Thrun
School of Computer Science
Carnegie Mellon University

http://www.cs.cmu.edu/~thrun

draft, please do not circulate

Abstract

In the 1970s, most research in robotics presupposed the availability of exact models, of robots and
their environments. Little emphasis laced on sensing and the intrinsic limitations of modeli

complex physical phenomena. This red in the mid-1980s, when the paradigm shified towards
reactive techniques. Reactive controllers rely on capable sensors to generate robot control. Rejections
of models were typi for researchers in this field. Since the mid-1990s, a new approach has begun
to emerge: probabilistic robotics. This approach relies on statistical techniques to seamlessly integrate
imperfect models and imperfect sen

g. The present article describes the basics of probabilistic robotics

and highlights some of its recent successes.
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Bayesian Inference

* Inference = educated guessing
* Bayesian inference = guessing in the style of Bayes

 Example
e EdDiscussion: “My robot stopped moving, the hardware is

broken, send me new parts”
 What is the probability that the robot is broken, given that

it stopped moving?

no motion working
motion
40
60

Fast Robots




Bayesian Inference

* Inference = educated guessing
* Bayesian inference = guessing in the style of Bayes

 Example
e EdDiscussion: “My robot stopped moving, the hardware is

broken, send me new parts”
 What is the probability that the robot is broken, given that

it stopped moving?

no motion broken  working broken working

motion
20 32

After lab 8 - Before lab 8 t

30 48

Fast Robots 2 1




Bayesian Inference

* Inference = educated guessing
* Bayesian inference = guessing in the style of Bayes
 Example
e EdDiscussion: “My robot stopped moving, the hardware is
broken, send me new parts”
* Translate to probability
e P(something) = #something / #everything
* Before lab 8:
e P(broken) = #tbroken / #kits =20/ 100=0.2
* P(working) = #working / #kits =80 /100 =0.8
* After lab 8:
e P(broken) = #tbroken / #kits =50/ 100 = 0.5
* P(working) = #working / #kits =50/ 100 = 0.5

broken working

20
48
30
2
broken working
32
19
48

After lab 8

Before lab 8



Bayesian Inference broken working

* Inference = educated guessing

* Bayesian inference = guessing in the style of Bayes 20
* Example 48
e EdDiscussion: “My robot stopped moving, the hardware is
broken, send me new parts” 30
 What is the probability that the robot is broken, given that it
stopped moving? 2
* Conditional Probability broken working
* If you know that the robot is broken, what is the probability
that it stopped moving? 32
* P(no motion | broken) = #broken and no motion / #broken 19
o Afterlab 8 =48/50 = 0.96
P(no motion | working) = #working and no motion / #working 48
After lab 8 =20/50=0.40

After lab 8

Before lab 8



Bayesian Inference

* Inference = educated guessing
* Bayesian inference = guessing in the style of Bayes
 Example
e EdDiscussion: “My robot stopped moving, the hardware is
broken, send me new parts”

* Conditional Probability
* If you know that the robot is broken, what is the probability
that it stopped moving?
* P(no motion | broken) = #broken and no motion / #broken

* Beforelab 8 =19/20 =0.96
P(no motion | working) = #working and no motion / #working
Before lab 8 =32/80=0.40
Fast Robots

broken

48

broken

19

working

20

30

working

32

After lab 8

Before lab 8



Bayesian Inference

* Inference = educated guessing
* Bayesian inference = guessing in the style of Bayes
 Example
e EdDiscussion: “My robot stopped moving, the hardware is
broken, send me new parts”

* Conditional Probability
* If you know that the robot is broken, what is the
probability that it stopped moving?
 P(A|B)is the probability of A, given B
* Note: P(A|B) is not equal to P(B|A)
* P(cute|puppy) # P(puppy|cute)

broken working

20
48
30
2
broken working
32
19
48

After lab 8

Before lab 8



Bayesian Inference

* Inference = educated guessing
* Bayesian inference = guessing in the style of Bayes
 Example
e EdDiscussion: “My robot stopped moving, the hardware is
broken, send me new parts”

* Joint Probability
 What is the probability that the robot is both broken
and not moving?
» After lab 8:
* P(broken and not moving)
= P(broken)*P(not moving | broken)
=0.5*0.96=0.48

broken working

20
48
30
2
broken working
32
19
48

After lab 8

Before lab 8



Bayesian Inference broken working

* Inference = educated guessing
* Bayesian inference = guessing in the style of Bayes

* Example 48
e EdDiscussion: “My robot stopped moving, the hardware is
broken, send me new parts” 30

20

After lab 8

* Joint Probability 2
 What is the probability that the robot is both broken and P(working) = 0.80
not moving? broken working
« P(broken and not moving) P(broo';g”) -
= P(broken)*P(not moving | broken) | 32
=0.20 * 0.96 =0.192 19
* P(working and moving)
= P(working)*P(moving | working) 48
=0.80 7 0.60 =0.48 P(broken and not moving) / P(working and moving)
<>/ Fast Robots =0.19 1 =0.48

Before lab 8




Bayesian Inference broken working

* Inference = educated guessing

* Bayesian inference = guessing in the style of Bayes 20 n
* Example 48 =
e EdDiscussion: “My robot stopped moving, the hardware is E
broken, send me new parts” 30 “':?
* Joint Probability 2
* What is the probability that the robot is both broken and P(working) = 0.80
not moving? P(bmkem)b:roken working
 P(A, B) = P(ANB) = P(A and B) 090 .
 P(A, B) = P(A)*P(B|A) o
« P(A,B)=P(B, A) 19 <
P
(hadl
P(broken and not moving) —/ P(working and moving) &5)

<>/ Fast Robots =0.19 1 =0.48



Bayesian Inference broken working

* Inference = educated guessing

* Bayesian inference = guessing in the style of Bayes 20 -
 Example 48 Q
e EdDiscussion: “My robot stopped moving, the hardware is E
broken, send me new parts” 30 H:?

2

* Marginal Probability

° P(moving) P(working) = 0.80

= P(broken and moving) + P(working and moving) broken working
= 1/100 + 48/100 = 0.49 broken) =
* P(not moving) - -
=19/100 + 32/100 = 0.51 19 s
Py
48 =
P(broken and not moving) —/ P(working and moving) &5)

<>/ Fast Robots =0.19 1 =0.48



Bayesian Inference broken working

* Inference = educated guessing
* Bayesian inference = guessing in the style of Bayes
* Example 48
e EdDiscussion: “My robot stopped moving, the hardware is
broken, send me new parts” 30

 What is the probability that the robot is broken, given
that it stopped moving? 2

* P(broken | not moving) = ???
P(broken and not moving) broken working

= P(not moving)*P(broken|not moving)
P(not moving and broken) 32

= P(broken)*P(not moving|broken) 19
P(broken|not moving) = P(broken)*P(not moving|broken)

P(not moving) 48

Before lab 8 =0.2*0.96/0.51=0.38
After lab 8 =0.5*0.96 /0.68 =0.71 1

20

After lab 8

Before lab 8



Bayesian Inference

* Bayesian inference = guessing in the style of Bayes

lkelihood

p— ——  x = Robot state/

P (y) location

posterior

Fast Robots



Probability Distribution

 Beliefs

0.48
0.30

0.20

0.02

broken, broken, working, working,
moving not moving moving not moving

Broken robot example

broken

48

working

20

30

After lab 8



Probability Distribution

 Beliefs

0.5 0.5

head tail




Probability Distribution

 Beliefs

0.167 0.167 0.167 0.167 0.167  0.167 <:

1 2 3 4 5 6




Probability Distribution

 Beliefs

3.4e-9 0.9999..

win loose




Probability Distribution

* Beliefs
* Discrete -> continuous probability distribution

 Mean, median, most common value, etc.

0.28
0.24

0.17
0.12

0.09
2% TS 0.03
i T~ 0.01
— ———

<150 150- 160- 170- 180- 190- 200- >210
160 170 180 190 200 210

Probability




Probability Distributions

e  What is the maximum speed of your robot?
*  Your speed is 8.8 ft/s, 6.6 ft/s, 8.33 ft/s, but what is the actual value?

. Frequentist Statistics
e Mean: u=(8.8+6.6+8.33)/3 = 7.91 ft/s
 Variance: 0% =((8.8-7.91) 2 + (6.6-7.92) 2 + (8.33-7.91)?)/(3-1) = 1.35 ft/s
 Standard deviation: o = sqrt (0%)= 1.16 ft/s
e Standard error: o / sqrt(3) = 0.67 ft/s

. Bayesian Statistics
Probably 7.91ft/s...

Values from lab 3 (2020) What you observe




Probability Distributions

* Use Bayes theorem

Instead of events x and y
Substitute “s” for the actual speed
Substitute “m” for the measurements
e P(s)isour prior

P(x|y) =

P(y|x) P(x)

P(y)

« P(m]s)is the likelihood associated with those measurements
*  P(s|m)is what we believe about the speed given those measurements

e P(m)is the marginal likelihood
. Procedure:

e  Start with a belief

e Updateit

*  End up with a new belief!




Probability Distributions

Use Bayes theorem P(xDI) —

Start by assuming nothing

P(y|x) P(x)

P(y)

P(s) = uniform
P(s|m)=P(m]|s) * c,/c,
Simplified: P(s|m) = P(m]|s)

Guess! What if the actual max speed is 11 ft/s?
P(s=11|m=[6.6,8.33,8.8]) = P(m=[6.6,8.33,8.8] | s=11)
Pm=6.6 |s=11)*P(m=8.33 | s=11)*P(m=8.8 | s=11)




Probability Distributions

Use Bayes theorem P(Xbl) —

Start by assuming nothing

P(y|x) P(x)

P(y)

P(s) = uniform

P(s|m)=P(m]|s) * c,/c,

Simplified: P(s|m) = P(m]|s)
Guess! What if the actual max speed is 11 ft/s?
P(s=11|m=[6.6,8.33,8.8]) = P(m=[6.6,8.33,8.8] | s=11)
Pm=6.6 |s=11)*P(m=8.33 | s=11)*P(m=8.8 | s=11)

No prior:

Maximum Likelihood Estimate

(MLE)




Probability Distributions

* Use Bayes theorem
* Add a prior!

P(x|y) =

P(y|x) P(x)

P(y)

* You know yesterday’s speed, and you can kind of judge the current speed by eye
Prior: 7.91 ft/s + 1.16ft/s

e P(s=11| m=][6.6,8.33,8.8])=P(m=[6.6,8.33,8.8] | s=11) * P(s=11)
= P(m=6.6|s=11)*P(s=11) * P(m=8.33|s=11)*P(s=11) * P(m=8.8|s=11)*P(s=11)
Repeat the process!




Probability Distributions P(y|x) P(x)
* Use Bayes theorem P(Xbl) = p(y)
e Add a prior!

* You know yesterday’s speed, and you can kind of judge the current speed by eye
Prior: 7.91 ft/s + 1.16ft/s
e P(s=11| m=][6.6,8.33,8.8])=P(m=[6.6,8.33,8.8] | s=11) * P(s=11)
= P(m=6.6|s=11)*P(s=11) * P(m=8.33|s=11)*P(s=11) * P(m=8.8|s=11)*P(s=11)
Repeat the process!
Add everything up to get the posterior distribution

Maximum A Posteriori
(MAP)




Bayesian Inference

/kelihood

Plxly) = P(y|x) P(x)

5 PO
condrtional probability
posterior




Probability Distributions

Always believe the impossible, at least a little bit!

Leave room for believing the unlikely. Leave a non-
zero probability unless you are absolutely certain.

“It ain’t what you don’t know that gets you into
trouble. It’s what you know for sure that just ain’t
so.” —Mark Twain

“Alice laughed “there’s no use trying”, she said: “one
can’t believe impossible things. “l daresay you
haven’t had much practice.” said the Queen. “When |
was younger, | always did it for half an hour a day.
Why sometimes, I've believed as many as six
impossible things before breakfast.”

Fast Robots

Alice’s adventures in wonderland




Probabilistic Robotics

+ Explicitly represent the uncertainty using probability theory

+ Accommodate inaccurate models

+ Accommodate imperfect sensors

+ Robust in real-world applications

+ Best known approach to many hard robotics problems

Fast Robots

Is Robotics Going Statistics?
The Field of Probabilistic Robotics

Sebastian Thrun
School of Computer Science
Carnegie Mellon University

http://www.cs.cmu.edu/~thrun

draft, please do not circulate

Abstract

In the 1970s, most research in robotics presupposed the availability of exact models, of robots and
their environments. Little emphasis laced on sensing and the intrinsic limitations of modeli

complex physical phenomena. This red in the mid-1980s, when the paradigm shified towards
reactive techniques. Reactive controllers rely on capable sensors to generate robot control. Rejections
of models were typi for researchers in this field. Since the mid-1990s, a new approach has begun
to emerge: probabilistic robotics. This approach relies on statistical techniques to seamlessly integrate
imperfect models and imperfect sen

g. The present article describes the basics of probabilistic robotics

and highlights some of its recent successes.

41
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 Probabilistic Robotics, book by Dieter Fox, Sebastian Thrun, and Wolfram Burgard
e How Bayes Theorem works (Youtube), by Brandon Rohrer




	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42

