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Lab 6: PID control
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• Task A: Position control
• Benefit: Easiest
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Lab 6: PID control
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• Task A: Position control
• Task B: Orientation control

• Benefit: Good start to lab 9
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Good examples from last year:
• Orientation control 

• https://kr397.github.io/ece4960-labs/lab6.html
• Position control

• https://bwagner2-git.github.io/lab6

https://cei-lab.github.io/FastRobots-2023/Lab6.htm
https://kr397.github.io/ece4960-labs/lab6.html
https://bwagner2-git.github.io/lab6


Lab 6-8: PID control – Sensor Fusion - Stunt
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• Task A: Position control
• Task B: Orientation control
Procedure
• Lab 6: Get basic PID to work
• Do the pre-lab: you need good debugging scripts
• Start simple and work your way up, then hack away…

• Start slow (sampling rates, control frequency)
• Avoid blocking statements

• Wind-up, derivative LPF, derivative kick
• Motor scaling function

• Range of analogWrite: [0;255]
• Directionality
• Deadband
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• Random variable
• 𝑋𝑋: Ω → ℝ

• The probability that the random variable X has value x
• 𝑃𝑃 𝑋𝑋 = 𝑥𝑥 𝑜𝑜𝑜𝑜 𝑝𝑝(𝑥𝑥)

• Probabilities sum to 1
• ∑𝑥𝑥 𝑃𝑃 𝑋𝑋 = 𝑥𝑥 = 1

• Probabilities are always greater than 0
• 𝑃𝑃(𝑋𝑋=𝑥𝑥) ≥0

• Joint distribution Y
• 𝑝𝑝 𝑥𝑥, 𝑦𝑦 = 𝑃𝑃(𝑋𝑋 = 𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌 = 𝑦𝑦)

• Conditional probability
• 𝑝𝑝 𝑥𝑥 𝑦𝑦 = 𝑝𝑝(𝑥𝑥,𝑦𝑦)

𝑝𝑝(𝑦𝑦)

Recap from ECE 3100 Intro to Probability and Inference
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• Gaussian distributions
• [μ∓σ]
• Symmetric
• Unimodal
• Sum to “unity”

• Mean
• μ = -9.97306mg

• std dev
• σ =7.0318mg

• Variance
• σ2
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• 𝑝𝑝 𝑥𝑥 𝑦𝑦 = 𝑝𝑝(𝑥𝑥,𝑦𝑦)
𝑝𝑝(𝑦𝑦)

• Robot/sensor example

• Exercise
• Two children, the older is female, what is 

the probability that the second child is 
female?
• 50%

• Two children, one is female, what is the 
probability that the second child is female?
• 33%
• F-M, F-F, M-F, (M-M)

Conditional probability

y

x
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• Random variable
• 𝑋𝑋: Ω → ℝ

• The probability that the random variable X has value x:
• 𝑃𝑃 𝑋𝑋 = 𝑥𝑥 𝑜𝑜𝑜𝑜 𝑝𝑝(𝑥𝑥)

• Probabilities sum to 1
• ∑𝑥𝑥 𝑃𝑃 𝑋𝑋 = 𝑥𝑥 = 1

• Probabilities are always greater than 0
• 𝑃𝑃(𝑋𝑋=𝑥𝑥) ≥0

• Joint distribution Y
• 𝑝𝑝 𝑥𝑥, 𝑦𝑦 = 𝑃𝑃(𝑋𝑋 = 𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌 = 𝑦𝑦)

• Conditional probability
• 𝑝𝑝 𝑥𝑥 𝑦𝑦 = 𝑝𝑝(𝑥𝑥,𝑦𝑦)

𝑝𝑝(𝑦𝑦)
• Marginal probability

• 𝑝𝑝 𝑥𝑥 = ∑𝑦𝑦 𝑝𝑝 𝑥𝑥 𝑦𝑦 𝑝𝑝(𝑦𝑦)

Recap from ECE 3100 Intro to Probability and Inference

• Independence
• 𝑝𝑝 𝑥𝑥, 𝑦𝑦 = 𝑝𝑝 𝑥𝑥 𝑝𝑝(𝑦𝑦)

• 𝑝𝑝 𝑥𝑥 𝑦𝑦 = 𝑝𝑝 𝑥𝑥 =
𝑝𝑝(𝑥𝑥, 𝑦𝑦)

𝑝𝑝(𝑦𝑦)
• If X and Y are conditionally independent given 

Z=z, then
• 𝑝𝑝 𝑥𝑥, 𝑦𝑦|𝑧𝑧 = 𝑝𝑝 𝑥𝑥|𝑧𝑧 𝑝𝑝(𝑦𝑦|𝑧𝑧)

(Coin example)



• Uncertainty is inherent in the world 

• Five major factors
• Unpredictable environments
• Sensors 

• Subject to physical laws
• Signal to noise ratio

• Robot motion
• Noise, wear and tear, battery state, etc.
• Accuracy versus cost

• Models
• Abstractions of the real world

• Computation
• Real time systems 
• Timely response versus accuracy

11

Why consider uncertainty?



• Is this dress black and royal blue, or white and gold?
• Where does the uncertainty come from?

• blue and black under a yellow-tinted illumination (left)
• white and gold under a blue-tinted illumination (right)

12

Exercise
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Environment

Robot

Act Sense

(internal state)

(noisy and limited)

(internal belief)

(unpredictable)

Robot-Environment Model



“A robot that carries a notion of its own uncertainty and that acts accordingly
is superior to one that does not.” 

- Probabilistic Robotics by Thrun, Burgard, Fox
• Probabilistic approaches in contrast to traditional model-based motion planning techniques or 

reactive behavior-based motion:
• tend to be more robust to sensor and model limitations
• weaker requirements on the accuracy of the robot’s models

14

Probabilistic Approach



+ Explicitly represent the uncertainty using probability theory
+ Accommodate inaccurate models
+ Accommodate imperfect sensors
+ Robust in real-world applications
+ Best known approach to many hard robotics problems

15

Probabilistic Approach

- Computationally demanding

- Need to approximate

- False assumptions



Bayesian Inference
• Inference = educated guessing
• Bayesian inference = guessing in the style of Bayes
• Example

• EdDiscussion: “My robot stopped moving, the hardware is 
broken, send me new parts”

• What is the probability that the robot is broken, given that 
it stopped moving?

96
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40

60

workingbroken



broken working

Bayesian Inference
• Inference = educated guessing
• Bayesian inference = guessing in the style of Bayes
• Example

• EdDiscussion: “My robot stopped moving, the hardware is 
broken, send me new parts”

• What is the probability that the robot is broken, given that 
it stopped moving?
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Bayesian Inference
• Inference = educated guessing
• Bayesian inference = guessing in the style of Bayes
• Example

• EdDiscussion: “My robot stopped moving, the hardware is 
broken, send me new parts”

• Translate to probability
• P(something) = #something / #everything
• Before lab 8:

• P(broken) = #broken / #kits = 20 / 100 = 0.2
• P(working) = #working / #kits = 80 / 100 = 0.8

• After lab 8:
• P(broken) = #broken / #kits = 50 / 100 = 0.5
• P(working) = #working / #kits = 50 / 100 = 0.5
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Bayesian Inference
• Inference = educated guessing
• Bayesian inference = guessing in the style of Bayes
• Example

• EdDiscussion: “My robot stopped moving, the hardware is 
broken, send me new parts”

• What is the probability that the robot is broken, given that it 
stopped moving?
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• Conditional Probability
• If you know that the robot is broken, what is the probability 

that it stopped moving?
• P(no motion | broken) = #broken and no motion / #broken
• After lab 8 = 48/50 = 0.96
• P(no motion | working) = #working and no motion / #working
• After lab 8  = 20/50 = 0.40



Bayesian Inference
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• Conditional Probability
• If you know that the robot is broken, what is the probability 

that it stopped moving?
• P(no motion | broken) = #broken and no motion / #broken
• Before lab 8 = 19/20 = 0.96
• P(no motion | working) = #working and no motion / #working
• Before lab 8  = 32/80 = 0.40

• Inference = educated guessing
• Bayesian inference = guessing in the style of Bayes
• Example

• EdDiscussion: “My robot stopped moving, the hardware is 
broken, send me new parts”



Bayesian Inference

• Conditional Probability
• If you know that the robot is broken, what is the 

probability that it stopped moving?
• P(A|B) is the probability of A, given B
• Note: P(A|B) is not equal to P(B|A)

• P(cute|puppy) ≠ P(puppy|cute)

Be
fo

re
 la

b 
8

broken

1

working

32

48

19

Af
te

r l
ab

 8

broken

48

2

working

20

30

• Inference = educated guessing
• Bayesian inference = guessing in the style of Bayes
• Example

• EdDiscussion: “My robot stopped moving, the hardware is 
broken, send me new parts”



Bayesian Inference

• Joint Probability
• What is the probability that the robot is both broken 

and not moving?
• After lab 8:

• P(broken and not moving) 
= P(broken)*P(not moving | broken)
= 0.5 * 0.96 = 0.48
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• Inference = educated guessing
• Bayesian inference = guessing in the style of Bayes
• Example

• EdDiscussion: “My robot stopped moving, the hardware is 
broken, send me new parts”



Bayesian Inference

• Joint Probability
• What is the probability that the robot is both broken and 

not moving?
• P(broken and not moving) 

= P(broken)*P(not moving | broken)
= 0.20 * 0.96 = 0.192

• P(working and moving)
= P(working)*P(moving | working)
= 0.80 * 0.60 = 0.48 P(working and moving) 

= 0.48
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=0.19

P(working) = 0.80

P(broken) = 
0.20

• Inference = educated guessing
• Bayesian inference = guessing in the style of Bayes
• Example

• EdDiscussion: “My robot stopped moving, the hardware is 
broken, send me new parts”



Bayesian Inference

• Joint Probability
• What is the probability that the robot is both broken and 

not moving?
• P(A, B) = P(AꓵB) = P(A and B) 
• P(A, B) = P(A)*P(B|A)
• P(A, B) = P(B, A)

P(working and moving) 
= 0.48

Be
fo

re
 la

b 
3

broken

1

working

32

48

19

Af
te

r l
ab

 3

broken

48

2

working

20

30

P(broken and not moving)
=0.19

P(working) = 0.80

P(broken) = 
0.20

• Inference = educated guessing
• Bayesian inference = guessing in the style of Bayes
• Example

• EdDiscussion: “My robot stopped moving, the hardware is 
broken, send me new parts”



Bayesian Inference

• Marginal Probability
• P(moving) 

= P(broken and moving) + P(working and moving)
= 1/100 + 48/100 = 0.49

• P(not moving)
= 19/100 + 32/100 = 0.51

P(working and moving) 
= 0.48
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• Inference = educated guessing
• Bayesian inference = guessing in the style of Bayes
• Example

• EdDiscussion: “My robot stopped moving, the hardware is 
broken, send me new parts”



Bayesian Inference

• What is the probability that the robot is broken, given 
that it stopped moving?

• P(broken | not moving) = ???
• P(broken and not moving) 

= P(not moving)*P(broken|not moving)
• P(not moving and broken) 

= P(broken)*P(not moving|broken)
• P(broken|not moving) = P(broken)*P(not moving|broken)

• Before lab 8 = 0.2*0.96 / 0.51 = 0.38
• After lab 8 = 0.5*0.96 / 0.68 = 0.71

P(not moving)
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• Inference = educated guessing
• Bayesian inference = guessing in the style of Bayes
• Example

• EdDiscussion: “My robot stopped moving, the hardware is 
broken, send me new parts”



Bayesian Inference
• Bayesian inference = guessing in the style of Bayes

𝑃𝑃 𝑥𝑥|𝑦𝑦 =
𝑃𝑃 𝑦𝑦|𝑥𝑥 𝑃𝑃(𝑥𝑥)

𝑃𝑃(𝑦𝑦)

prior

posterior

likelihood

marginal likelihood
(constant)

• 𝑦𝑦 = Sensor data
• 𝑥𝑥 = Robot state/ 

location



Probability Distribution
• Beliefs
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Probability Distribution
• Beliefs

head tail

0.5 0.5



Probability Distribution
• Beliefs

1 2 3 4
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Probability Distribution
• Beliefs

win loose

3.4e-9 0.9999…



Probability Distribution
• Beliefs
• Discrete -> continuous probability distribution

• Mean, median, most common value, etc.
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Probability Distributions
• What is the maximum speed of your robot?

• Your speed is 8.8 ft/s, 6.6 ft/s, 8.33 ft/s, but what is the actual value?
• Frequentist Statistics

• Mean: μ = (8.8+6.6+8.33)/3 = 7.91 ft/s
• Variance: σ2 = ((8.8-7.91) 2 + (6.6-7.92) 2 + (8.33-7.91)2)/(3-1) = 1.35 ft/s
• Standard deviation: σ = sqrt (σ2)= 1.16 ft/s
• Standard error: σ / sqrt(3) = 0.67 ft/s

• Bayesian Statistics
• Probably 7.91ft/s…

Values from lab 3 (2020) What you observe
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Probability Distributions
• Use Bayes theorem
• Instead of events x and y

• Substitute “s” for the actual speed
• Substitute “m” for the measurements

• P(s) is our prior
• P(m|s) is the likelihood associated with those measurements
• P(s|m) is what we believe about the speed given those measurements
• P(m) is the marginal likelihood
• Procedure:

• Start with a belief
• Update it
• End up with a new belief!

𝑃𝑃 𝑥𝑥|𝑦𝑦 =
𝑃𝑃 𝑦𝑦|𝑥𝑥 𝑃𝑃(𝑥𝑥)

𝑃𝑃(𝑦𝑦)



Probability Distributions
• Use Bayes theorem
• Start by assuming nothing

• P(s) = uniform
• P(s|m) = P(m|s) * c1/c2
• Simplified: P(s|m) = P(m|s)

• Guess! What if the actual max speed is 11 ft/s?
• P(s=11|m=[6.6,8.33,8.8]) = P(m=[6.6,8.33,8.8] | s=11)
• P(m = 6.6 | s = 11) * P(m = 8.33 | s = 11) * P(m = 8.8 | s = 11)

4 5 6 7 8 9 10 11 12

Open loop max speed [ft/s]

0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y

4 5 6 7 8 9 10 11 12

Open loop max speed [ft/s]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Pr
ob

ab
ilit

y

4 5 6 7 8 9 10 11 12

Open loop max speed [ft/s]

0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y

𝑃𝑃 𝑥𝑥|𝑦𝑦 =
𝑃𝑃 𝑦𝑦|𝑥𝑥 𝑃𝑃(𝑥𝑥)
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Probability Distributions
• Use Bayes theorem
• Start by assuming nothing

• P(s) = uniform
• P(s|m) = P(m|s) * c1/c2
• Simplified: P(s|m) = P(m|s)

• Guess! What if the actual max speed is 11 ft/s?
• P(s=11|m=[6.6,8.33,8.8]) = P(m=[6.6,8.33,8.8] | s=11)
• P(m = 6.6 | s = 11) * P(m = 8.33 | s = 11) * P(m = 8.8 | s = 11)
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No prior:
Maximum Likelihood Estimate
(MLE)



Probability Distributions
• Use Bayes theorem
• Add a prior!

• You know yesterday’s speed, and you can kind of judge the current speed by eye
• Prior: 7.91 ft/s ± 1.16ft/s

• P(s = 11 | m = [6.6, 8.33, 8.8]) = P(m = [6.6, 8.33, 8.8] | s = 11) * P(s = 11)
= P(m=6.6|s=11)*P(s=11) * P(m=8.33|s=11)*P(s=11) * P(m=8.8|s=11)*P(s=11)

Repeat the process!
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Probability Distributions
• Use Bayes theorem
• Add a prior!

• You know yesterday’s speed, and you can kind of judge the current speed by eye
• Prior: 7.91 ft/s ± 1.16ft/s

• P(s = 11 | m = [6.6, 8.33, 8.8]) = P(m = [6.6, 8.33, 8.8] | s = 11) * P(s = 11)
= P(m=6.6|s=11)*P(s=11) * P(m=8.33|s=11)*P(s=11) * P(m=8.8|s=11)*P(s=11)

Repeat the process!
Add everything up to get the posterior distribution

Maximum A Posteriori 
(MAP)
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Bayesian Inference

𝑃𝑃 𝑥𝑥|𝑦𝑦 =
𝑃𝑃 𝑦𝑦|𝑥𝑥 𝑃𝑃(𝑥𝑥)

𝑃𝑃(𝑦𝑦)
conditional probability

prior

posterior

likelihood

marginal likelihood
(constant)



Probability Distributions
• Always believe the impossible, at least a little bit!

• Leave room for believing the unlikely. Leave a non-
zero probability unless you are absolutely certain.

• “It ain’t what you don’t know that gets you into 
trouble. It’s what you know for sure that just ain’t
so.” –Mark Twain

• “Alice laughed “there’s no use trying”, she said: “one 
can’t believe impossible things. “I daresay you 
haven’t had much practice.” said the Queen. “When I 
was younger, I always did it for half an hour a day. 
Why sometimes, I’ve believed as many as six 
impossible things before breakfast.”

Alice’s adventures in wonderland



+ Explicitly represent the uncertainty using probability theory
+ Accommodate inaccurate models
+ Accommodate imperfect sensors
+ Robust in real-world applications
+ Best known approach to many hard robotics problems
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Probabilistic Robotics

- Computationally demanding

- Need to approximate

- False assumptions



References
• Probabilistic Robotics, book by Dieter Fox, Sebastian Thrun, and Wolfram Burgard
• How Bayes Theorem works (Youtube), by Brandon Rohrer
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