Prof. Kirstin Hagelskjzer Petersen

ECE 4160/5160
MAE 4910/5910

Fast Robots
Kalman Filter (recap)



mailto:kirstin@cornell.edu

O b
c: March 14th: Snow Day! ® +

& @ canvas.cornell.edu/courses/ 8/discussion_topics/565888 £ la » = O . :

Cornell @ Passkey &% CEl-labSlack 5% ECE Robotics @ Cor.. 5% Slack | STCCROPPS & Slack | ECE 4960: Fa 5= Slack| Packard Fell... » Cther bookmarks

ECE4160/ECE516... » Announcements » March 14th: Snow... 64 Student View

%, Edit
Home

Announcements i
March 14th: Snow Day! AV Mar 13 at 6:47pm
Syllabus Kirstin Hagelskjaer Peterser

All Sections
Modules

Grades Today's class and lab are cancelled per university regulations!

Zoom | have discussed with the TAs, and here's the new plan -- in part to make up for the snow day, and in part to help

students who are struggling to keep up with the deadlines:

People
Lab 6 deadlines have been postponed a full week (dates in Canvas are up-to-date). If you have already requested

Assignments slip days, these will be cancelled.

cd Di _ Lab 7 deadlines have also been postponed a full week (dates in Canvas are up-to-date), and we've decided to give
d Discussion _ _ ) _ _ _ .
you full points for completing task 1-3 as well as the new task 4.a in which you simply do extrapolation on the TOF

Rubrics Z data to get a better estimate of the distance to the wall. If you have time, consider doing task 4.b (implementing the

. Kalman Filter on your robot instead) for up to 4 bonus points!
Collaborations . .
Lab 8 deadlines remain the same.

BigBlueButton . . .
Hopefully, this news will make your snow day more enjoyable!

-

ast Robots




Kalman Filter

disturbance
> system i >
LQR ¢ KF :J Joise




Kalman Filter

Kalman Filter ( u(t-1), 2(t-1), u(t), z(t) )

1. pp(t) =Ap(t-1)+ B u(t)

2. Z,()=AZ(t-1)AT+Z, prediction
3. Ke=Z,(t)CT(CZ (1) CT+Z)*

4. p(t)= py(t)+ Ky (2(t) - C py(t)) update

5. 2Z(t)=(1-K C) Z,(t)

6. Return u(t) and X(t)

Example process and measurement noise covariance matrices

2 0
[Gl )Lz = 0'32

—
“ 0 oy




Example Lab 7

 Define A, B, C matrices
* Using system ID on a step response

Fast Robots



Example Lab 7

F =ma=mx

F=u—dx
u—dx = mx
.oou d
X =———X
m m

§
§
N\
\
\
\
\
\
\
§
N

M

e At steady state (cst speed), we can find d
+ d==~0.0005

X

* We can use the rise time to find m State space equation
e m =209 5 41258104
In(0.1) . 0 1 y 0
Xl = d |
-l |+ |-
m m

C=[-1 0]

~/ EGEYR6BdREst Robots



Example Lab 7

 Define A, B, C matrices
* Using system ID on a step response
e Sanity check
* Run virtual Kalman Filter on data from Lab 6 PID
 What is your initial state, and how confident in it are you?
* How much trust do you put in your model versus your sensor values?
* Experiment
* E.g. putless trust in the model
 E.g. putless trustin the sensors
e Start with a bad initial estimate
e Recall, our dynamic model is a bad estimate for the static robot

Fast Robots 7



s a H H 14
Linear Systems Control — “review of review + Linearizing non-linear

e Linear system: X = Ax systems
* Solution: x(t) = e4tx(0) * Fixed points
e Eigenvectors: T=1[& & ... &4 * Jacobian

A 0’ * Controllability

_ 1 « x=(A—BK)x
* Eigenvalues: D= 2
. * Reachability

-0 An.- e Controllability Gramian
* Linear transform: AT =TD * Pole placement
e Solution: edt = TeltT-1
* Mapping from x to z to x: x(t) = TeP*T1x(0) e Optimal control (LQR)

e Stability in continuous time: A = a + ib, stable iff a<0
e Observability

* Discrete time: x(k +1) = Ax(k), A = e4At
e Stability in discrete time: A" = R™e'"9, stable iff R<1

Optimal observer (KF)
* Sensor/model noise

<~/ Fast Robots 8



What we covered so far...

* Configuration space and transformations

* Data types

Next up....

* Sensors Navigation and Planning

* Distance Sensors
e Odometry and IMU
e Characterization

o

e Actuators/Motors
e Wiring/EMI

e Control
e State space models
* PID/LQR control
* Observers D
L

 Deterministic -> Probabilistic Robots I

* Bayes theorem
Fast Robots 9




Prof. Kirstin Hagelskjzer Petersen

ECE 4160/5160
MAE 4910/5910

Fast Robots

Navigation and Planning

Slides adapted from Vivek Thangavelu

10


mailto:kirstin@cornell.edu

Navigation

* Problem: Find the path in the workspace from an initial
location to a goal location, while avoiding collisions

* How do you get to your goal?

Can you see your goal?

Do you have a map?

Are obstacles unknown or dynamic?

Does it matter how fast you get there?

Does it matter how smooth the path is?

How much compute power do you have?

How precise and accurate is your motion control?
What sensors do you have available?

etc.




Navigation

Problem: Find the path in the workspace from an initial
location to a goal location, while avoiding collisions

 Assumption: A good map for navigation exists

- Global navigation
Given a map and a goal
location, find and execute a
trajectory that brings the
robot to the goal
(Long term plan)

Local navigation
Given real-time sensor
readings, modulate the robot
trajectory to avoid collisions
(Short term plan)

Fast Robots




Navigation

- Navigation breaks down to: Localization, Map Building, Path Planning

Global Map and State

Localization Path Planning

Environmental
model

ESTIMATION

Information
Extraction

Path Execution

Sensing

Actuator

Raw Sensor Data Commands

Fast Robots

ONINNV1d

TOYLNOD

NOILO



Outline of the next module on Navigation

* Local planners

* Global localization and planning
* Map representations H
* Continuous
* Discrete
* Topological

* Maps as graphs
* Graph Search Algorithms

* Breadth First Search

e Depth First Search

 Dijkstras D
e S

.

14

Fast Robots



Prof. Kirstin Hagelskjzer Petersen

ECE 4160/5160
MAE 4910/5910

Local Planners

15


mailto:kirstin@cornell.edu

Local Path Planning / Obstacle Avoidance

* Use goal position, recent sensor readings, and relative position of robot to
goal
e Can be based on a local map
e Often implemented as a separate task

* Runs at a much faster rate than the global planning

* 3 examples: Wagner, ITS 2015

* BUG Algorithms
* Vector Field Histogram (VFH)
* Dynamic Window Approach (DWA)

(b)

Fig. 1. Dashed blue spline 1s global path: a) Green spline is ideal local
path; b) Red spline is actual local path

Fast Robots



Bug Algorithms

* Uses local knowledge, and the direction and distance to the goal

* Basic idea
* Follow the contour of obstacles until you see the goal
e State 1: Seek goal
e State 2: follow wall

Source

* Different variants: BugO, Bugl, Bug?2 —sfe— Destinztion

Refarence Path
Trajectony

* Advantages
* Super simple
* No global map
e Completeness

Obstacle

* Disadvantages
e Suboptimal

Fast Robots 17



Bug 0 Howie Choset 16-735

Sensor Assumptions m

* Direction to the goal ><
* Detect walls

Algorithm
1. Go towards goal

towards goal again /
3. Loop .

<~/ Fast Robots




Bug 0 6-735

Sensor Assumptions
* Direction to the goal

e Detect walls

Algorithm
1. Go towards goal

2. Follow obstacles until you can go
towards goal again

3. Loop




Bug 0 Howie Choset 16-735

Sensor Assumptions

* Direction to the goal ><
* Detect walls

Algorithm

1. Go towards goal

2. Follow obstacles until you can go
towards goal again

3. Loop

<~/ Fast Robots




Bug 1l Howie Choset 16-735

Sensor Assumptions

* Direction to the goal ><
* Detect walls

 Odometry

Algorithm
1. Go towards goal

2. Follow obstacles and remember how close _

you got to the goal

3. Return to the closest point, and loop

<~/ Fast Robots



Bug 1 t 16-735

Sensor Assumptions

* Direction to the goal
* Detect walls
 Odometry

Algorithm

1. Go towards goal

2. Follow obstacles and remember how close
you got to the goal

3. Return to the closest point, and loop

<~/ Fast Robots



Bug 1 - formally

Sensor Assumptions

* Direction to the goal
* Detect walls
 Odometry

* Lower bound traversal?
e d

e Upper bound traversal?
e d+1.5-Sum(P,)

* Pros?

* |f a path exist, it returns in finite time

It knows if none exist!

<~/ Fast Robots



Bug 2 Howie Choset 16-735

Sensor Assumptions

* Direction to the goal

* Detect walls

 Odometry

* Original vector to the goal

Algorithm
1. Go towards goal on the vector

2. Follow obstacles until you are back on the
vector (and closer to the obstacle) h

3. Loop -

<~/ Fast Robots




Bug 2

Sensor Assumptions

* Direction to the goal
* Detect walls

 Odometry
* Original vector to the goal

Algorithm

1. Go towards goal on the vector

2. Follow obstacles until you are back on the
vector (and closer to the obstacle) 1

3. Loop

<~/ Fast Robots



Bug 2 Howie Choset 16-735

Sensor Assumptions

* Direction to the goal

* Detect walls

 Odometry

* Original vector to the goal

Algorithm
1. Go towards goal on the vector

2. Follow obstacles until you are back on the
vector (and closer to the obstacle)

3. Loop

<~/ Fast Robots



https://www.youtube.com/watch?v=T2PVaKyxMmY

Battle of the Bugs (1 vs 2)

Bug 1 Bug 2
Layout 1 Layout 1

27



https://www.youtube.com/watch?v=T2PVaKyxMmY

Battle of the Bugs (1 vs 2)

Exhaustive Search Greedy Search
Bug 1 Bug 2
Layout 2 Layout 2

: %/ Fast Robots 28



Bug Algorithms

* Uses local knowledge, and the direction and distance to the goal
* Basic idea

* Follow the contour of obstacles until you see the goal
e State 1: Seek goal

e State 2: follow wall

e SOUMCE

* Different variants: Bug0, Bugl, Bug?2 —sf— Dastination

Refarence Path

Trajectony

* The robot motion behavior is reactive
e |ssues if the instantaneous sensor _
. . Obstacle
readings do not provide enough
information or are noisy

Fast Robots 29



http://www.personal.umich.edu/

Vector Field Histograms ~johannb/Papers/paper16.pdf

* VFH creates a local map of the environment around the
robot populated by “relatively” recent sensor readings

* Build a local 2D grid map - reduce to 1-DoF histogram

* Planning

* Find all openings large enough for robot to pass
* Choose the one with the lowest cost, G

G =a*goal _direction + b*orientation + c*prev_direction

Borenstein et al.

threshold

Fast Robots 30




http://www.personal.umich.edu/

Vector Field Histograms ~johannb/Papers/paper16.pdf

* VFH creates a local map of the environment around the
robot populated by “relatively” recent sensor readings

* Build a local 2D grid map - reduce to 1-DoF histogram

* Planning
* Find all openings large enough for robot to pass
* Choose the one with the lowest cost, G
G =a*goal_direction + b*orientation + c*prev_direction A"
* VFH+: Incorporate kinematics i Ty

* Limitations
* Does not avoid local minima
* Not guaranteed to reach goal

Fast Robots




http://www4.cs.umanitoba.ca/~jacky/Teaching/Courses/
Dynamic Window Approach 74.795-LocalVision/ReadingList/fox97dynamic.pdf

* Search in the velocity space (robot moves in circular arcs)
* Takes into account robot acceleration capabilities and update rate

* A dynamic window, V,, is the set of all tuples (v4, w,) that can be reached

* Admissible velocities, V,, include those where the robot can stop before
collision

* The search spaceisthen V. =1, NV, NV,
* Cost function: G(v,0) = o(a-heading(v,w)+ - dist(v,w)+ y - velocity (v, »))

-‘-“{ "-'-'-r . .-"‘.---"-._
left wall corridor | right Wﬂ“}-”' /

L » f-"
S, o !

!
door | right wall I

Figure 4. Velocity space



Local Planning Algorithms, Summary

* Bug Algorithms
 |nefficient, but can be exhaustive

* Vector Field Histograms
* Takes into account probabilistic sensor measurements

* Vector Field Histograms +
* Takes into account probabilistic sensor measurements and robot kinematics

* Dynamic Window Approach

* Takes into account robot dynamics

Fast Robots 33



Prof. Kirstin Hagelskjzer Petersen

ECE 4160/5160
MAE 4910/5910

Global Localization

34


mailto:kirstin@cornell.edu

Outline of the next module on Navigation

* Local planners

* Global localization and planning
* Map representations H
* Continuous
* Discrete
* Topological

* Maps as graphs
* Graph Search Algorithms

* Breadth First Search

e Depth First Search

 Dijkstras D
e S

.

35

Fast Robots



Navigation

- Navigation breaks down to: Localization, Map Building, Path Planning

Global Map and State
Localization EE— Path Planning

Environmental
model

Information
Extraction
Raw Sensor Data

Fast Robots

ESTIMATION

Path Execution

Sensing

Actuator
Commands

ONINNV1d

TOYLNOD

NOILO



Localization Problem

Position Tracking

Global Localization

* |nitial robot pose is known

e Either deterministically (odometry) or
through Bayesian statistic (motion and
sensor models)

* |ltisa “local” problem, as the
uncertainty is local (often small) and
confined to a region near the robot’s
true pose

Fast Robots

* |nitial robot pose is unknown
* Need to estimate position from scratch

* A more difficult “global” problem,
where you cannot assume boundedness
in pose error

kidnapped robot problem




Outline of the next module on Navigation

* Local planners

* Global localization and planning
 Map representations
* Continuous

* Discrete
* Topological

* Maps as graphs
* Graph Search Algorithms

* Breadth First Search

e Depth First Search

 Dijkstras D
e S

.

38

Fast Robots



Navigation

- Navigation breaks down to: Localization, Map Building, Path Planning

Global Map and State
Localization < Path Planning

ONINNV1d

Environmental
model

ESTIMATION

Information Path Execution 8
Extraction Sens; 2
i
& Actuator ’_UI
@)
Raw Sensor Data Commands ~

Fast Robots

NOILO



Prof. Kirstin Hagelskjzer Petersen

ECE 4160/5160
MAE 4910/5910

Map Representations

40


mailto:kirstin@cornell.edu

Map Representation

(a) Building plan
(b) line-based map
(c) occupancy grid-based map

(d) topological map

Important properties
* Memory allocation
* Computation

* Robot pose

# 1] e
/a ‘\A
5 U
Q\EB) 5
gy

N~ Fast Robots

2ED A2

a)
robot position ._ =]
.

L

s {0.5X0.5m?)

100 lines (2 parameters)

)

NN

dl

I

node i
>

L1

1 r b
T

L

50 features, 18 nodes



What if the robot is not a point?

Fast Robots



Configuration Space

* Each coordinate in the configuration space represents a robot degree of
freedom

* Global motion planning normally takes place in the configuration space

Ex 1: Planar arm

Fast Robots



Configuration Space

* Each coordinate in the configuration space represents a robot degree of
freedom

* Global motion planning normally takes place in the configuration space

Ex 2: Circular root in 2D world

Obstacles /

Fast Robots



Configuration Space

* Each coordinate in the configuration space represents a robot degree of
freedom

* Global motion planning normally takes place in the configuration space

Ex 2: Circular root in 2D world

Fast Robots



Configuration Space

* Each coordinate in the configuration space represents a robot degree of
freedom

* Global motion planning normally takes place in the configuration space

Ex 2: Circular root in 2D world

Robot can be
<—— treated as a point
object




Map Representation Considerations

Summary

* The precision of the map must appropriately match the precision with
which the robot needs to achieve its goals

* The precision of the map and the type of features represented must
match the precision and data types returned by the robot’s sensors

* The complexity of the map representation has direct impact on the
computational complexity of reasoning about mapping, localization,
and navigation




Continuous Representations

- Exact decomposition of the environment
- Used mainly in 2D representations

« Closed-world assumption

- Storage proportional to object density

* Example: Continuous line representations

* Using range finders, we can extract
lines/line segments in the environment




Fixed Decomposition

* Tessellate the world at a fixed resolution
* Approximate features given the resolution
* Most commonly used: Occupancy grid

Fast Robots



Fixed Decomposition

Courtesy of S. Thrun




Adaptive Cell Decomposition

* Adapt cell size to features

Fast Robots

e goal




Lab 9-12: Combo of Linear Representation and Fixed Decomposition
- Courtesy of Vivek Thangavelu

* Map is represented by lines
* Robot pose is represented by a
fixed decomposition of (x,y,theta)

Bel(X, = (0,0,0))

Fast Robots



Robots in 3D Environment

How many coordinates are
needed now?
* 6DOF

Representation requirements
e Compactin memory
e Efficient access and queries
* Enables sensor fusion

Solution
* Topological Representation



Topological Decomposition

A topological representation is a graph

that specifies nodes and edges
* Nodes denote areas in the environment
» Edges describe environment connectivity

e Robots can...

- ...detect their current position in terms of
the nodes of the topological graph

- ...travel between nodes using robot
motion

Fast Robots




Outline of the next module on Navigation

* Local planners

* Global localization and planning
 Map representations
* Continuous

* Discrete
* Topological

* Maps as graphs
* Graph Search Algorithms

* Breadth First Search

e Depth First Search

 Dijkstras D
e S

.

55

Fast Robots



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Example Lab 7
	Slide Number 6
	Example Lab 7
	Slide Number 8
	What we covered so far…
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Outline of the next module on Navigation
	Slide Number 15
	Local Path Planning / Obstacle Avoidance
	Bug Algorithms
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Bug Algorithms
	Vector Field Histograms
	Vector Field Histograms
	Dynamic Window Approach
	Local Planning Algorithms, Summary
	Slide Number 34
	Outline of the next module on Navigation
	Slide Number 36
	Localization Problem
	Outline of the next module on Navigation
	Slide Number 39
	Slide Number 40
	Map Representation
	What if the robot is not a point?
	Configuration Space
	Configuration Space
	Configuration Space
	Configuration Space
	Map Representation Considerations
	Continuous Representations
	Fixed Decomposition
	Fixed Decomposition
	Adaptive Cell Decomposition
	Lab 9-12: Combo of Linear Representation and Fixed Decomposition
	Robots in 3D Environment
	Topological Decomposition
	Outline of the next module on Navigation

