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Modelling path planning as a graph search problem 

Common alternatives
• Optimal control
• Potential fields

• Topological Graphs 
• Cell decomposition
• Visibility Graphs
• RRT
• PRM
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Real world Configuration 
Space

Map 
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Modelling path planning as a graph search problem 

• Depth first search
• Breadth first search
• Lowest-Cost first search
• Greedy search
• A* search
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• Common graph structure
• For every node, n
• you have a set of actions, a
• that moves you to a new node, n’

n
a1

a2

a3
n’1

n’2

n’3

Search Algorithms, General
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n = state(init)
frontier.append(n)
while(frontier not empty)

n = pull state from frontier
append n to visited
if n = goal, return solution
for all actions in n

n’ = a(n)
if n’ not visited

append n’ to frontier

visited

…

frontier

…

X*Y

Search Algorithms, General
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(0,0)

(0,1) (1,0)

(0,2) (1,1)

(0,3) (1,2)

(0,4) (1,3) Memory grows linearly with 
the depth of the graph

• Is it complete?
• Yes, but only on finite graphs

• What is the time complexity?
• O(bm)

• What is the space complexity?
• O(bm) Sy

x

Depth First Search (DFS) Last-In First-Out 
(LIFO) Buffer

visited

…

frontier

…

X*Y
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Memory grows exponentially 
with the depth of the graph

(0,0)
(0,1) (1,0)

(0,2) (1,1) (2,0)

(0,3) (3,1)

Sy

x

Breadth First Search (BFS)
• Is it complete?

• Yes, as long as b is finite
• Is it optimal?

• Yes
• What is the time complexity?

• O(bm)
• What is the space complexity?

• O(bm)

First-In First-Out 
(LIFO) Buffer

visited

…

frontier

…

X*Y
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Lowest-Cost First Search
• Consider parent cost!

R

G

(2,3)

(2,2)(3,3) (1,3)(2,4) (2,4)

(3,3)

(2,2)

(1,3)

Data structure
• n.state
• n.parent
• n.cost
• n.action

Search order: N, E, S, W

2 1 2 3

Cost
• Go straight, cost 1
• Turn one quadrant, cost 1

(3,4) 2 (3,2)2
(3,4)

(3,2)

(1,4)
(1,4)

2 2 (2,1)

(2,1)

(1,2)

(1,2)

2 1 2

(3,1)

(3,1) (2,0)

(2,0)

(1,1)2 1 2
n = state(init)
frontier.append(n)
while(frontier not empty)

n = pull state from frontier
visited.append(n)
if n = goal, return solution
for all actions in n

n’ = a(n)
if n’ not visited

priority = heuristic(goal,n’)
frontier.append(priority)
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(0,0)

Informed Search Search order: N, E, S, W

(0,1) (1,0)

(1,2)(0,3)

(0,2) (1,1)

• Greedy Search
• Define a heuristic to target the goal

(1,3)(0,4)

(1,4) (2,3)

4 4

3 3

2 2

3 1

2 0

n = state(init)
frontier.append(n)
while(frontier not empty)

n = pull state from frontier
visited.append(n)
if n = goal, return solution
for all actions in n

n’ = a(n)
if n’ not visited

priority = heuristic(goal,n’)
frontier.append(priority)
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45

y

x

Informed Search Search order: N, E, S, W

• Greedy Search
• Complete?

• No
• Time complexity?

• O(bm)
• Space complexity?

• O(bm)
• Optimal?

• no…

6 7 8 9

10
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Search Algorithms, General
• Breadth First Search

• Complete and optimal
• …but searches everything

• Lowest-Cost First Algorithm
• Complete and optimal
• …but it wastes time exploring in directions that aren’t promising 

• Greedy Search 
• Complete (in most cases)
• …only explores promising directions

Considers parent cost

Considers goal

A*
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S

Find a treasure
Informed Search Search order: N, E, S, W

• A* (“A-star”)

n = state(init)
frontier.append(n)
while(frontier not empty)

n = pull state from frontier
if n = goal, return solution
for all actions in n

n’ = a(n)
if (n’ not visited)

priority = heuristic(goal,n’)+cost
frontier.append(priority)

if (visited and n’.cost < n_old.cost)
visited.append(n’)
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S

Find a goal
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Informed Search Search order: N, E, S, W

• A* (“A-star”)
• Cost and goal heuristic

6

8

9

10
(0,0)

(0,1) (1,0)

(0,2) (1,1) (2,0)

(1,2)(0,3) (2,1) (3,0)

1 2

121 2

1 2 1

4 4

3 3 3

2 2 2 4
(1,3)(0,4)

3 1
1 2

5

9 10

12 13

6

10

1514

16 15
(3,1)(2,2) 21

1 316 19

(1,4)
2
220 (3,2)(2,3)

11

0 2

21

goal
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A* Search
• What if the heuristic is too optimistic?

• Estimated cost < true cost
• What if the heuristic is too pessimistic?

• Estimated cost > true cost
• No longer guaranteed to be optimal

• What if the heuristic is just right?
• Pre-compute the cost between all nodes
• Feasible for you?

inadmissible heuristic

admissible heuristic
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Informed Search Search order: N, E, S, W

• A* (“A-star”)
• Cost and goal heuristic

(0,0)
(0,1) (1,0)

(0,2) (1,1) (2,0)

(1,2)(0,3) (2,1) (3,0)

1 2

121 2

1 2 1

4 4

3 3 3

2 2
2 4

(1,3)(0,4) 3 1
1 2

5

9 10

12 13

6

10

1514

16 15
(3,1)(2,2) 21

1 316 19

(1,4)
2 2

20 (3,2)(2,3)
0 2

21

goal

• Complete?
• Yes!

• Time Complexity
• O(bm)

• Space Complexity
• O(bm)

• Optimal?
• Yes, if the heuristic is admissible!
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Summary

7

1

2

3

4

5

6

8

9

10

11

1

2 3

45

6 7 8

S

LCFS
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12 15

minimum path
minimum path
and efficient
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Bayes Theorem 
+

Robot-Environment Model
+

Markov Assumption

= 

Bayes Filter
20
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Bayesian Inference

1 2 3 4 5

𝑃𝑃 𝑥𝑥|𝑧𝑧 =
𝑃𝑃 𝑧𝑧|𝑥𝑥 𝑃𝑃(𝑥𝑥)

𝑃𝑃(𝑧𝑧)

prior

posterior

likelihood

marginal likelihood
(constant)

• 𝑧𝑧 = Sensor data
• 𝑥𝑥 = Robot state/ 

location

• Lost robot example
• Sensor measures distance to the door
• p(X0 = 1 or 2 or 3 or 4 or 5) = 1/5
• p(x|z) can be hard to compute
• What is p(z|x)?
• If Z=1, where are you most likely to be?
• If Z=0, where are you most likely to be?
• If Z=2, where are you most likely to be?
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+

Robot-Environment Model
+

Markov Assumption

= 

Bayes Filter
23



Robot-Environment 
Interaction

24
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• Two fundamental types of interaction between a robot and its environment:

− Sensor Measurements/Observations 

− Control Actions

Robot-Environment Interaction

25

Environment

Robot

Act Sense

(internal state)
(noisy and limited)

(internal belief)

(unpredictable)
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• Helps us express a robot-environment interaction using probability

• Typically modeled as a discrete time system

• The state at time t will be denoted by as xt

• A sensor measurement at time t will be denoted as zt

• A control action will be denoted by ut

• Induces a transition from state xt-1 to xt

Robot-Environment Model

26

Conventions as per Siegwart, R., Nourbakhsh, I.R. and Scaramuzza, D., 
2011. Introduction to autonomous mobile robots. MIT press.
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• (Arbitrary) Assumptions 

• The robot executes a control action ut first and then takes a measurement zt

• There is one control action per time step t

• Control actions include a legal action “do-nothing ”

• There is only one measurement z per time step t

• Shorthand Notation: xt1:t2 = xt1 , xt1+1 , xt1+2  , . . . ,  xt2

Robot-Environment Model

27
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• The state, x, includes:
• Robot Specific:

- Pose, Velocity, Sensor status, etc.

• Environment Specific:
- Static variables

- location of walls

- Dynamic variables 
- Whereabouts of people in the vicinity of the robot

• …context-specific

Robot State

28

(coords, orientation)
(map) 

(joint angles, 
velocities, 
accelerations)
(objects, 
texture)
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• zt

• Tend to increase the robot’s knowledge

Sensor Measurements/Observations 

29

• ut

• …change the state of the world 

• carry information about the change of the robot state in the time interval (t-1:t]
• Tends to induce loss of knowledge

Control Actions balance
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• The evolution of state and measurements is governed by probabilistic laws

• State: How is xt generated stochastically?

• Measurements: How is zt generated stochastically?

Probabilistic Generative Laws

30

• xt depends on x0:t-1, z1:t-1 and u1:t

State Generation

p( xt | x0:t-1, z1:t-1, u1:t)

…intractable!
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Markov Assumption

32
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The Markov assumption postulates that past and future data are 
independent if one knows the current state

• A stochastic model/process that obeys the Markov assumption 
is a Markov model

• (This does not mean that xt is deterministic based on xt-1)

• If we can model our robot as a Markov process…

• We can recursively estimate xt using 

• xt-1, zt, ut

• But not x0:t-1, z1:t-1, u1:t !
• Tractable!

Markov Assumption

33

Andrey Markov (1856–1922) was a 
Russian mathematician best known 
for his work on stochastic processes 

???
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• Random walk on the number line

• At each step, the position may change by +1 or −1 with equal probability

• The transition probabilities depend only on the current position, not on the manner in 
which the position was reached

• This is a Markov Process!

Drunkard’s walk!

34

1 2 3 4 5 6

P(X=4) =1
P(X=5) = 0.5P(X=3) = 0.5
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• Contents
• 5 quarters (25¢)
• 5 dimes (10¢)
• 5 nickels (5¢)

• Draw coins randomly, one at a time and 
place them on a table 

• Example:
• Xn = total value of coins on the table 

after n draws
• The sequence { 𝑋𝑋𝑛𝑛∶ 𝑛𝑛 𝜖𝜖 ℕ } is a 

stochastic process

Coin Purse

35

• First, I draw a nickel
• What is 𝑋𝑋1=?
• Next, I draw a dime
• What is 𝑋𝑋2=?

5¢

15¢

𝑋𝑋1 𝑋𝑋2 𝑋𝑋3
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• Contents
• 5 quarters (25¢)
• 5 dimes (10¢)
• 5 nickels (5¢)

• Draw coins randomly, one at a time and 
place them on a table 

• Example:
• Xn = total value of coins on the table 

after n draws
• The sequence { 𝑋𝑋𝑛𝑛∶ 𝑛𝑛 𝜖𝜖 ℕ } is a 

stochastic process

Coin Purse

36

• Suppose…
• In the first six draws, you pick all 5 

nickels and 1 quarter
• 𝑋𝑋6= 50¢

• What can we say about 𝑋𝑋7?
• 𝑃𝑃(𝑋𝑋7≥ 0.55) = 1

• Can you do better?
• Can you draw a nickel in the 7th

draw?
• 𝑃𝑃(𝑋𝑋7≥ 0.6) = 1

• Exercise
• Is this a Markov Model?
• If not, can you tweak the definition 

of Xn to make it one?
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• Contents
• 5 quarters (25¢)
• 5 dimes (10¢)
• 5 nickels (5¢)

• Draw coins randomly, one at a time and 
place them on a table 

• Example:
• Xn = total value of coins on the table 

after n draws
• The sequence { 𝑋𝑋𝑛𝑛∶ 𝑛𝑛 𝜖𝜖 ℕ } is a 

stochastic process

Coin Purse

37

• Markov model
• Xn = {number of quarters, number of 

dimes, number of nickels} drawn
• First you pick a nickel

• 𝑋𝑋1 = {0,0,1}
• 𝑋𝑋6 = {1,0,5}

• Now, what can you say about 𝑋𝑋7?
• 𝑝𝑝(𝑋𝑋7 ≥ 0.6) = 1

• State space: 6*6*6 = 216 possible states
• …but independent of the number of 

draws



Robot-Environment Model

38
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• xt is generated stochastically from the state xt-1

• xt depends on x0:t-1, z1:t-1 and u1:t

p(xt | x0:t-1, z1:t-1, u1:t-1)

• If state xt is modeled under the Markov Assumption, then

• Knowledge of only the previous state xt-1 and control ut is sufficient to predict xt

State Generative Model

39

p(xt | x0:t-1, z1:t-1, u1:t-1) = p(xt | xt-1, ut) 
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• Similarly, the process by which measurements are generated are of importance

p(zt|x0:t, z1:t-1, u1:t)

• If xt conforms to the Markov Assumption, then

p(zt|x0:t, z1:t-1, u1:t) = p(zt|xt)

• The state xt is sufficient to predict the (potentially noisy) measurements

• Knowledge of any other variable, such as past measurements, controls, or even 
past states, is irrelevant under the Markov Assumption 

Measurement Generative Model

40



Bayes Theorem 
+

Robot-Environment Model
+

Markov Assumption

= 

Bayes Filter
41
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• Probabilistic robotics represents beliefs through posterior conditional probability 
distributions

• probability distributions over state variables conditioned on available data

• The belief of a robot is the posterior distribution over the state of the environment, 
given all past sensor measurements and all past controls

• Belief over a state variable 𝑥𝑥𝑡𝑡 is denoted by 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 :
𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑧𝑧1:𝑡𝑡,𝑢𝑢1:𝑡𝑡)

• The (prior) belief is the belief before incorporating the latest measurement 𝑧𝑧𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑧𝑧1:𝑡𝑡−1,𝑢𝑢1:𝑡𝑡)

Robot Belief

42
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• A recursive algorithm that calculates the belief distribution from measurements and 
control data

Bayes Filter

43

1. 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁_𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1 ,𝑢𝑢𝑡𝑡 , 𝑧𝑧𝑡𝑡 :

2. for all 𝑥𝑥𝑡𝑡 do

3. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = ∑𝑥𝑥𝑡𝑡−1 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑢𝑢𝑡𝑡 , 𝑥𝑥𝑡𝑡−1) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1

4. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = 𝜂𝜂 𝑝𝑝(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡
5. endfor

6. return 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡
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• A recursive algorithm that calculates the belief distribution from measurements and 
control data

Bayes Filter

44

xt-1

1. 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁_𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1 ,𝑢𝑢𝑡𝑡 , 𝑧𝑧𝑡𝑡 :

2. for all 𝑥𝑥𝑡𝑡 do

3. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = ∑𝑥𝑥𝑡𝑡−1 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑢𝑢𝑡𝑡 , 𝑥𝑥𝑡𝑡−1) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1

4. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = 𝜂𝜂 𝑝𝑝(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡
5. endfor

6. return 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡

Transition probability /action model

(Prediction step)
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• A recursive algorithm that calculates the belief distribution from measurements and 
control data

Bayes Filter

45

xt-1

1. 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁_𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1 ,𝑢𝑢𝑡𝑡 , 𝑧𝑧𝑡𝑡 :

2. for all 𝑥𝑥𝑡𝑡 do

3. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = ∑𝑥𝑥𝑡𝑡−1 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑢𝑢𝑡𝑡 , 𝑥𝑥𝑡𝑡−1) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1

4. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = 𝜂𝜂 𝑝𝑝(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡
5. endfor

6. return 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡
Measurement Probability / Sensor Model

Transition probability /action model

(Prediction step)

(Update/measurement Step)
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Kalman Filter ( μ(t-1), Σ(t-1), u(t), z(t) ) 
1. μp(t) = A μ(t-1) + B u(t)
2. Σp (t) = A Σ(t-1) AT + Σu

3. KKF = Σp(t) CT ( C Σp(t) CT + Σz)-1

4. μ(t)= μp(t) +  KKF ( z(t) - C μp(t) )
5. Σ(t) =( I – KKF C) Σp(t)
6. Return μ(t) and Σ(t)

46

update

prediction

Kalman Filter Implementation
State estimate: μ(t)
State uncertainty: Σ(t)
Process noise: Σu
Kalman filter gain: KKF
Measurement noise: Σz
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Bayes Filter

47

xt-1

1. 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁_𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1 ,𝑢𝑢𝑡𝑡 , 𝑧𝑧𝑡𝑡 :

2. for all 𝑥𝑥𝑡𝑡 do

3. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = ∑𝑥𝑥𝑡𝑡−1 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑢𝑢𝑡𝑡 , 𝑥𝑥𝑡𝑡−1) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1

4. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = 𝜂𝜂 𝑝𝑝(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡
5. endfor

6. return 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡

(Prediction step)

(Update/measurement Step)

t-1

t
Etc..

Measurement Probability / Sensor Model

Transition probability /action model
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● 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1,𝑢𝑢𝑡𝑡 )

− It is known as the state transition probability 

− It specifies how the robot state evolves over time as a function of robot 
controls ut

● 𝑝𝑝(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡)

− It is known as the measurement probability

− It specifies how the measurements are generated from the robot state xt

− Informally, you may think of measurements as noisy projections of the state

• Remember that these predictions are stochastic and not deterministic

Dynamical Stochastic Model
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• To compute the posterior belief recursively, the algorithm requires an initial belief 
𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥0 at time 𝑡𝑡 = 0

Bayes Filter - Initial Conditions

49

xt-1

1. 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁_𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1 ,𝑢𝑢𝑡𝑡 , 𝑧𝑧𝑡𝑡 :

2. for all 𝑥𝑥𝑡𝑡 do

3. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = ∑𝑥𝑥𝑡𝑡−1 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑢𝑢𝑡𝑡 , 𝑥𝑥𝑡𝑡−1) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1

4. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = 𝜂𝜂 𝑝𝑝(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡
5. endfor

6. return 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡

(Prediction step)

(Update/measurement Step)
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• To compute the posterior belief recursively, the algorithm requires an initial belief 
𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥0 at time 𝑡𝑡 = 0

• If we know the initial state with absolute certainty, we can initialize a point mass 
distribution that centers all probability mass on the correct value of 𝑥𝑥0 and assign zero 
everywhere else

• If we are entirely ignorant of the initial state, we can initialize it with a uniform 
probability distribution over all the possible states

Bayes Filter - Initial Conditions
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• Navigation breaks down to: Localization, Map Building, Path Planning
Navigation
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