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Lab 8 Stunts!

Objective

The purpose of this lab is to combine everything you've done up till now to do fast stunts. This is the
reason you labored all those long hours in the lab carefully soldering up and mounting your components|
Your grade will be based partially on your hardware/software design and partially on how fast your robot
manages to complete the stunt (relative to everyone else in class). We will also have everyone vote on

the coolest stunt and the best blooper video - the top picks will receive up to 2 bonus points.

Parts Required

« 1 x R/C stunt car <
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Markov Assumption

The Markov assumption postulates that past and
future data are independent if one knows the
current state

 State generative model
* PX¢ | X1 Z1:6.1 Upt) = P(X¢ | X Uy)
 Measurement generative model

* P(Zi|X0.0 Z1.0.0 Ur) = P(Z]X0)

Fast Robots

Andrey Markov (1856—-1922) was a
Russian mathematician best known
for his work on stochastic processes
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Robot-Environment Model
+

Markov Assumption
+

Bayes Theorem

Bayes Filter




First for-loop iteration Second for-loop iteration

Correct for likelihood of sensor measurement

Bayes Filter

1. Algorithm Bayes_Filter (bel(x;_1),u;, z;):

2. for all x; do

3. bel(x;) = Dixe_y PCelug, xe—1) bel(xi_q) (Prediction step)
4. bel(x;) = np(zelxe) @(Xt) (Update step)
5. endfor

6. return bel(x;)
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Bayes Filter et

1. Algorithm Bayes_Filter (bel(x;_1),u;, z;):

2. for all x; do

3. bel(x;) = Qixe_y POeelug, xe—1) bel(xp_q) (Prediction step)
4. bel(x;) = 1 p(z¢|x;) @(Xt) (Update step)
5. endfor

6. return bel(x;)
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Violations of Markov Assumption

Bel(X, = (0,0,0

* Typical violations of the Markov assumption
* Environmental dynamics not included in x,
* Inaccuracies in the probabilistic models p(z, | x,) and p(x, | u,, X;.)
e Approximation errors when representing belief functions

* Incomplete state representations are often preferable to reduce computational
complexity of the Bayes filter algorithm

* In practice Bayes filters have been found to be surprisingly robust to such violations

Fast Robots 8



Bayes Filter

Example 1




Bayes Filter - Example 1

. A robot can “observe” a door through its
sensor and can interact with it by “pushing”

- The door may be in one of two states
- open or closed

- At any given time, the robot can either
- push or do_nothing

- The sensors and the actuators on the robot are noisy

Fast Robots

The probability that the robot can sense an
open door is 0.6

The probability that the robot can sense a
closed door is 0.8

After a push action, probability that a door
is open if it was previously openis 1

After a push action, probability that a door
is open if it was previously closed is 0.8

If the robot does nothing, the door
continues to be in the previous state
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Bayes Filter - Example 1 . The probability that the robot can sense an
open door is 0.6

» Measurement model - The probability that the robot can sense a
* p(Z; =closed | X; = is_closed) = 0.8 closed door is 0.8
* p(Z, = open | X, = is_closed) = 0.2 - After a push action, probability that a door
 p(Z, = closed | X, = is_open) = 0.4 is open if it was previously openis 1
: After a push action, probability that a door
* p(Z; =open |X; = is_open) = 0.6

is open if it was previously closed is 0.8
If the robot does nothing, the door
continues to be in the previous state
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Bayes Filter - Example 1

Action model

* p(Xy = is_closed|U; = do_nothing, X;_4 = is_closed) =1
* p(X; = is_open |U, = do_nothing,X,_; = is_closed) =0
 p(X; = is_closed |U; = do_nothing, X;_, = is_open) =0

* p(X; = is_open |U; = do_nothing,X;_, = is_open) =1

* p(X; = is_closed|U; = push,X;_1 = is_closed) =0.2
* p(X; = is_open |U; = push,X,_, = is_closed) =0.8
* p(X; =is_closed|U; = push,X;_, = is_open) =0
« p(X, =is_open |U, = push,X,_, = is_open) =1

Fast Robots

The probability that the robot can sense an
open door is 0.6

The probability that the robot can sense a
closed door is 0.8

After a push action, probability that a door
is open if it was previously openis 1

After a push action, probability that a door
is open if it was previously closed is 0.8

If the robot does nothing, the door
continues to be in the previous state
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Bayes Filter - Example 1

Initial Conditions

bel(X, = closed) = bel(X, = open) =

Measurement Probability Control Action/Transition Probability
p(? i closec;IXt_=. iS—lCZOS;d) i L p(X, = is_closed|U, = do_nothing, X,_; = is_closed)
p(Z: = openl|X, = lS_—C psedl) = L2 p(X; = is_open |U; = do_nothing, X;_, = is_closed)
pgt : gloessli(lxt__i;iﬂ::;) : 8: p(X; = is_closed |U; = do_nothing,X;,_, = is_open)
plee = Opentidy = 15.0p - p(X, = is_open |U, = do_nothing,X,_; = is_open)
p(X; = is_closed|U; = push,X;_, = is_closed)

p(X; = is_open |U; = push,X,_q = is_closed)
p(X; = is_closed|U; = push,X;_,; = is_open)

p(X; = is_open |U; = push,X;_, = is_open)

Fast Robots
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Bayes Filter - Example 1

u,; = do_nothing and z; = sense_open

Incorporate the action

w(xﬂ = Zp(xﬂupxo) bel(x,)

Fast Robots
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Bayes Filter - Example 1

u,; = do_nothing and z; = sense_open

Incorporate the action

w(ﬂ) = Zp(xﬂupxo) bel(x,)

= p(x1|U; = do_nothing, X, = is_open) bel(X, = is_open)
+ p(x1|U; = do_nothing, X, = is_closed) bel(X, = is_closed)

Fast Robots
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Bayes Filter - Example 1

u,; = do_nothing and z; = sense_open

Incorporate the action

w(?ﬁ) = Zp(xﬂupxo) bel(x,)

= p(x1|U; = do_nothing, X, = is_open) bel(X, = is_open)
+ p(x1|U; = do_nothing, X, = is_closed) bel(X, = is_closed)

For the hypothesis X; = is_closed:

m(Xl = is_closed) = p(X; = is_closed|U; = do_nothing, X, = is_open) bel(X, = is_open)

+ p(X; = is_closed|U; = do_nothing, X, = is_closed) bel(X, = is_closed)
=0x05+1x 05 =05

Fast Robots
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Bayes Filter - Example 1

u; = do_nothing and z; = sense_open _
bel(X; = is_open) = 0.5

Incorporate the measurement

bel(X; = is_closed) = 0.5

bel(x,) = np(Z; = sense_open| x,)bel(x;)

For two possible cases, X; = is_open and X; = is_closed , we get

is_open) = n p(Z, = sense_open |X; = is_open) bel(X,; = is_open)
=1nx06x05 =103

bel(X,

bel(X, = is_closed) =n p(Z, = sense_open |X; = is_closed) E(Xl = is_closed)
=1nx02x05 =n7n0.1

Normalizing constant: 1 = (0.3 + 0.1)"1 =25
* bel(X; = is_closed) = 1n0.1= 0.25 PBetter than initial
 bel(X; = is_open) = 1n0.3 = 0.75 Dbelief at time t=0!

Fast Robots
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Bayes Filter - Example 1

U, = pushand z, = sense_open

Prediction update:
bel(X, = is_closed) = 0% 0.75 + 0.2 x0.25 = 0.05

bel(X, = is_open) = 1x0.75 + 0.8x0.25 = 0.95

Measurement Update:
bel(X, = is_closed) = n x 0.2 X 0.05
bel(X, = is_open) = nx0.6x0.95

12

0.017
0.983

12

Way better than the initial belief at time t=0!

Fast Robots
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Summary of Bayes Filter

* The robot is modeled as performing a series of
alternating measurements and actions

e Given:

1. Algorithm Bayes_Filter (bel(x;_1),u; ,z;):
- Sensor model p(z|x) e

2. for all x, do
- Action model p(x|u,xs_1) 2 B = B 56t Bl
- Initial Conditions p(xg) 4. bel(x,) = 1 p(z|x.) bel(x,)
- To compute: 5. auekion

6. return bel(x;)

- Estimate state x of a dynamical system

- Posterior of the state (Belief):
bel(x;) = p(x¢|uq, zq, ..., Ug, Z¢)

Fast Robots )



Summary of Bayes Filter

- Prediction Step:

Incorporate action, which increases
uncertainty

Compute @(xt) = p(X¢|Z1:6—1, Ur:e)
Requires Action Model: p(x; |us, x¢—1)
- Measurement/Update Step:

Incorporating measurement, which
decreases uncertainty

Compute bel(x;) = p(x¢|Z1.¢, Us:t)

Requires Sensor Model: p(z;|x;)

Fast Robots

o 91 os

Algorithm Bayes_Filter (bel(x;_1), u; , z;):
for all x; do
E(xt) = th—1 p(xe|ue, xe—1) bel(xi_q)
bel(x;) = np(z¢|x;) E(xt)

endfor

return bel(x;)

20
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Probabilistic Motion Model
p(xe | up, Xe—1)



mailto:kirstin@cornell.edu

Bayes Filter

1. Algorithm Bayes_Filter (bel(x;_1), u; , z;):

2. for all x; do

3. bel(x,) = Y, P(Xelug, xe—q) bel(xi_q) (Prediction step)
4 bel(x;) = np(zc|x) bel(x;)

5. endfor

6. return bel(x;)

~/ Fast Robots 22



Robot Motion

* Mobile robots on a plane
* Robot pose x; = (x,y,0)7"

* Robot motion is inherently uncertain
* Transition model: p(x;|us, X¢—1)
* How can we model p(x;|u;, x;—1) based on kinematic
equations?
* Velocity model
* Odometry model




Quick Detour: Probability Distributions

. Gaussian, normal distribution, bell curve 1D Gaussian Probability Density Function

- Defined by two parameters:
- mean U

- standard deviation o

- Can be defined for multidimensional data

Fast Robots



Quick Detour: Probability Distributions

* 3inputs: f(x| U, 02)
. 2inputs::f(x—u|0,02)
 Computationally cheaper alternative: triangular distributions

1. Algorithm prob_normal_distribution(a. b*): 1. Algorithm prob_triangular_distribution(a, b?) :

1 "a’ o (1 a
return — exp | — 2. return max | 0, — — —
4 i :L‘ . X v b E;r b I ”

v 2mb?

Fast Robots



Quick Detour: Probability Distributions

* Sampling algorithms output samples from a given distribution

e Often used to approximate distributions




Quick Detour: Probability Distributions

0, 0045

0,004

- N
0, 0035

e
0,003

0, 0025

e
0,002

0,0015

0, 0ol

e
0, 0005

i -4

0537073,  0,00172555
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Velocity Model

* translation velocity v
 rotational velocity w
* U = (v, w)
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Velocity Model Parameters

*u= (vright’ Vlef)
* U=(Veour @con)

Fast Robots
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Velocity Model Parameters

Fast Robots

(x,y,0)T




Velocity Model Parameters

(x,y,0)T

(X’, yI, eI)T

Fast Robots

(Rotation ¥ when at
new pose)



Velocity Model

e Exact motion: x, = (x',y', 87

e Startstate:x,_; = (x,y,0)"

e Control data: u; = (vg, w¢)?

* (Under the assumption that both

velocity components are kept fixed
over the time interval)

e ..and then we add y

Fast Robots



Velocity Model

Algorithm motion_model_velocity(z;, u:, ¢ 1)

1 (x —2")cosO - (y —y')sinf
/ 2 (y — "i'_/ "Ycosl — (x
a4 !
5 T Wy —y')

x')sinf

_ 4 —i_ y + p( ' — )

Af = at: ﬂl-( y' =y
JAN,

i’ — s
At

r*

!
, L

_Ad |deal control values
At

At =

Fast Robots

') —atan2(y — y", x

Calculate the error-free

control between the states x, ,
and x,



Probabilistic Velocity Model

Algorithm motion_model_velocity(z;, u:. z¢_1):
5 - - ylos, ur. 2e-1) Calculate the error-free

1 (x—2")cosh +~ (y —y')sin b

= control between the states x, |

2 (y —y')cosf — (2 — 2')sin 6
g and x,

s ,

vt =ty —v)

y+y

2

rf =V -2+ (y — y*)?

y* + p(2’ — x)

A0 = atan2(y’ — y*, 2" — 2") —atan2(y — y*, 2 — 2™
b= il r*
At
. Af
At
I S
— At -
return prob(v — 0, [v| + as|w]) - prob(w — w, az|v| + aslw|)

- prob (7. as|v| — as|w|)

A / Fast Robots



Velocity Motion Model

(darker regions are more probable)

The velocity motion model for different noise parameters settings for the same control
us = (v, w,)" projected in the x-y space

a) More angular than translational noise
b) Larger transitional noise
c) Large angular and translational noise parameters

Fast Robots



Velocity Model with a Map

p(xe | e, xp—1) p(x; | ug , x¢_q, map)

Fast Robots



Sampling from Velocity Model

Algorithm sample_motion_model_velocity(u;,z; 1):

v = v+ sam ple ( Q1 |V + Q9 “""’“ )
w = w + sample(as|v| + a4|w|)
v = sample(as|v] + aglw])

=2 — £sinf + < sin(0 + ©At)

y' =y -+ Lcosh — L cos(0 + OAL)
0 =0+ oAt + AL

return z; = (2',y',0")*




Sampling from Velocity Model

- i
L=} ’Jb“
6:‘_5;?;5‘_'}3’ Fast Robots



Velocity Model Parameters

*u= (Vright’ Vlef)

* u=(vcow ®cord | ! .

: x5y)"

 How would you use this
in your system?
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e Prediction/planning
* Cons

* Parameter tuning

* |naccurate .,y &,y

x,y)T x,y)"
Fast Robots oy &y
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Odometry Model

U = (X¢—1, x_t)T
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Odometry Model Parameters

%,y 0"

: 57‘01:1
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Odometry Model Parameters

* Relative odometry motion is
transformed into a sequence of three
steps

. Initial rotation 6,41
+  Translation 8¢y g

* These three parameters are sufficient to
reconstruct the relative motion between
two robot states

_ T
ut — (5r0t11 5tranSr 5r0t2)

Fast Robots



Odometry Model Parameters

Orory = atan2(y' —y,x' —x)— 6

Otrans = \/(37, - )_’)Z‘I' (x' — f)z




1. Algorithm motion_model_odometry(r;.

drot1 = atan2(y’ —

jy,x' —I) — 6

- I." £ Ty —2 ;T —3 3
Otrans = 1'\- o=y —y)

-

Srot1 = atan2(y’ —

1 i ]

Uy, —rl—l"-\'

I'_ &y f W T ;g W T
III‘ T8 f— "l"l: ||_ .EI - .EI I T I.. .‘I.'Ir - .ll.'lr I -

Ooty = 0 — 6 —

p1 = Prob(d,+

P2 = pI‘Ob (:{Sﬁ‘!_'l.?i.."-;

10.

11.

p3 = Prob(d, .2

return py.ps.ps

Fast Robots

Iﬁ' rotl

e, Ti—1)

~9 29 \
— Opotly Q10,1 + Q207 40 )

- ;“,-m,q ”1‘5; 19 T (nc‘)

29 29 22
o ‘i}f?‘!i'f-??--“:' a3 {jh'!'].?i‘-."'; + (-'Eﬁl‘j?‘r_n‘l + (-'E*l‘j rot2 ..J

tri mh

Calculate the relative motion
parameters from odometry readings
(what the robot did)

Calculate the relative motion parameters for
the given states x,.; and x,
(what the robot did ideally)



1. Algorithm sample_motion_model odometry(z; |, u;) :

J;-f;.“ = atan?{;}’ — il} i’_'r — f;l — H_ \

> Calculate the relative motion parameters

Otrans = from odometry readings

th;f? — H_’ — H_ — Jmfl /

- . iy ety
Orotl = Opotl — SEI.II][J].E“H'!},.”” + flft}h'umx}

Add noise to calculated motion
parameters

2
trans

z:I,,.m“. = O] — sample(n;;ﬁ + Lz:}f”” + O u:?',‘z.,,u}
8ot = Oropt — sample(mﬁfrﬂ + ﬂgﬁf,.,w}

r=x+ 5,,..”“- cos( ! + ti-nn}

Y = Y + trans SIN(O + dyor1) Calculate the sample state

0" =6+ ':irrrfl + ':irrrfﬂ

return z; = (', y', )"




Odometry Model

* U = (Xr—1, ft)T

 How would you use this model in your system?

 Odometry is available after the robot has moved
e Can be used for estimation algorithms (e.g. localization and mapping)

e Cannot be used for prediction (e.g. probabilistic motion planning)

Fast Robots



Sampling from odometry Model

O
-
=
i
L-]

<

10 p}fl‘?éfrgﬁ'p%odometry model, using the same error parameters as in the previous slides with 500 samples in each.



Repeated Sampling from our odometry motion model

o

10 meters

Fast Robots
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