ECE 4160/5160 MAE 4910/5910

Fast Robots

ECE 4160/5160 MAE 4910/5910

Fast Robots

LAB9

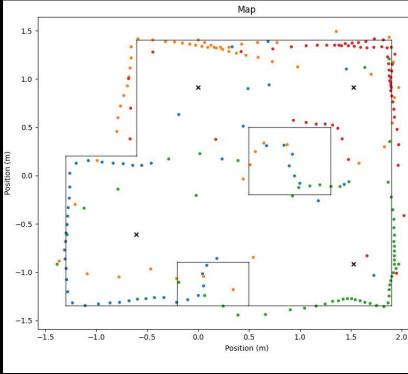
https://cei-lab.github.io/FastRobots-2023/Lab9.html

LAB 9 - Mapping

- Objective: Generate map using your robot and ToF sensor
- Strategy: Place your robot in (at least) 4 marked positions on the floor and spin while taking measurements.
- Control:
 - Open loop
 - Orientation control
 - Angular speed control
- Sanity check: Polar plot, repeated polar plots
- Scatter plot: Use the transformation matrix
- Convert to a line-based map
- Great example from 2022

Fast Robots

https://pages.github.coecis.cornell.edu/avp34/ECE46 00-webpage/lab9.html



ECE 4160/5160 MAE 4910/5910

Fast Robots

Bayes Filter II

Algorithm Bayes_Filter $(bel(x_{t-1}), u_t, z_t)$:

- 1. for all x_t do
- 2. $\overline{bel}(x_t) = \sum_{x_{t-1}} p(x_t|u_t, x_{t-1}) \ bel(x_{t-1})$ [Prediction Step]
- 3. $bel(x_t) = \eta p(z_t|x_t) \overline{bel}(x_t)$ [Update/Measurement Step]
- 4. endfor
- 5. return $bel(x_t)$
- Example 1
 - Robot in a 1D world
 - The importance of having some belief in all states
- Example 2
 - Bayes with beans
 - Remember to normalize!

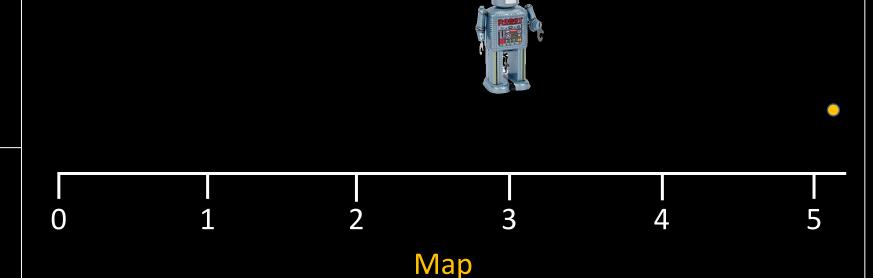
- Example 3
 - (x,y)-robot in a grid world
 - Computational efficiency
 - Matrices
 - Pre-cache observations

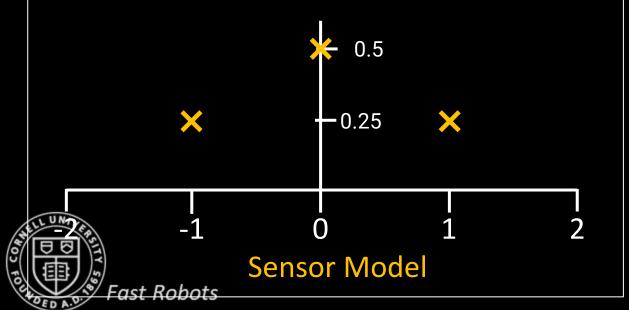
• What do we need to run the Bayes filter?

$$p(x|z) = ?$$

$$P(Z=door | X=5) = 0.5$$

 $P(Z=door | X=4) = 0.25$
 $P(Z=door | X=3) = 0$





Motion Model

At t = 0, no information

State	0	1	2	3	4	5
p(x ₀)						

At t = 0, no information

State	0	1	2	3	4	5
p(x ₀)	$\frac{1}{6}$	1 6	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

At t = 1, $U_1 = do_nothing$, $Z_1 = door$

State	0	1	2	3	4	5
p(x ₁)						

Do we have to do the prediction step?

Do the update step!

At t = 0, no information

State	0	1	2	3	4	5
p(x ₀)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

At t = 1, $U_1 = do_nothing$, $Z_1 = door$

State	0	1	2	3	4	5
p(x ₁)	0	0	0	0	$\frac{\frac{1}{6} \times \frac{1}{4}}{\frac{1}{6} \times \frac{1}{4} + \frac{1}{6} \times \frac{1}{2}}$	$\frac{\frac{1}{6} \times \frac{1}{2}}{\frac{1}{6} \times \frac{1}{4} + \frac{1}{6} \times \frac{1}{2}}$
State	0	1	2	3	4	5
p(x ₁)	0	0	0	0	$\frac{1}{3}$	$\frac{2}{3}$

At t = 1, $U_1 = do_nothing$, $Z_1 = door$

State	0	1	2	3	4	5
p(x ₁)	0	0	0	0	$\frac{1}{3}$	$\frac{2}{3}$

At t = 2, $U_2 = -1$

State	0	1	2	3	4	5
p(x ₂)						

At t = 1, $U_1 = do_nothing$, $Z_1 = door$

State	0	1	2	3	4	5
p(x ₁)	0	0	0	0	$\frac{1}{3}$	$\frac{2}{3}$

At t = 2, $U_2 = -1$

State	0	1	2	3	4	5
p(x ₂)	0	0	0	$\frac{1}{3} \times \frac{1}{2}$	$\frac{1}{3} \times \frac{1}{2} + \frac{2}{3} \times \frac{1}{2}$	$\frac{2}{3} \times \frac{1}{2}$

State	0	1	2	3	4	5
p(x ₂)	0	0	0	$\frac{1}{6}$	$\frac{1}{2}$	$\frac{1}{3}$

Fast Kopots

At t = 2, $U_2 = -1$

State	0	1	2	3	4	5
p(x ₁)	0	0	0	$\frac{1}{6}$	$\frac{1}{2}$	$\frac{1}{3}$

At t = 2, $U_2 = -1$, $Z_2 = door$

State	0	1	2	3	4	5
p(x ₂)						

At t = 1, $U_1 = do_nothing$, $Z_1 = door$

State	0	1	2	3	4	5
p(x ₁)	0	0	0	$\frac{1}{6}$	$\frac{1}{2}$	$\frac{1}{3}$

At t = 2, $U_2 = -1$, $Z_2 = door$

State	0	1	2	3	4	5
p(x ₂)	0	0	0	$\frac{1}{6} \times 0$	$\frac{\frac{1}{2} \times \frac{1}{4}}{\frac{1}{2} \times \frac{1}{4} + \frac{1}{3} \times \frac{1}{2}}$	$\frac{\frac{1}{3} \times \frac{1}{2}}{\frac{1}{2} \times \frac{1}{4} + \frac{1}{3} \times \frac{1}{2}}$

State	0	1	2	3	4	5
p(x ₂)	0	0	0	0	$\frac{3}{7}$	$\frac{4}{7}$

Bayes Filter - Example 1 (initial conditions 1)

At t=0, we are absolutely certain the robot is at state $X_0 = 0$

State	0	1	2	3	4	5
p(x ₀)						

Bayes Filter - Example 1 (initial conditions 1)

At t=0, we are absolutely certain the robot is at state $X_0 = 0$

State	0	1	2	3	4	5
p(x ₀)	1	0	0	0	0	0

At t=1, $U_1 = do_nothing$, $Z_1 = door$

State	0	1	2	3	4	5
p(x ₁)						

Bayes Filter - Example 1 (initial conditions 1)

At t=0, we are absolutely certain the robot is at state $X_0 = 0$

State	0	1	2	3	4	5
p(x ₀)	1	0	0	0	0	0

At t=1, $U_1 = do_nothing$, $Z_1 = door$

State	0	1	2	3	4	5
p(x ₁)	0	0	0	0	0	0

Bayes Filter - Example 1 (initial conditions 2)

At t=0, we are "absolutely" certain the robot is at state $X_0 = 0$

State	0	1	2	3	4	5
p(x ₀)	$\frac{19}{20}$	$\frac{1}{100}$	$\frac{1}{100}$	$\frac{1}{100}$	$\frac{1}{100}$	$\frac{1}{100}$

At t=1, $U_1 = do_nothing$, $Z_1 = door$

State	0	1	2	3	4	5
p(x ₁)						

Bayes Filter - Example 1 (initial conditions 2)

At t=0, we are "absolutely" certain the robot is at state $X_0 = 0$

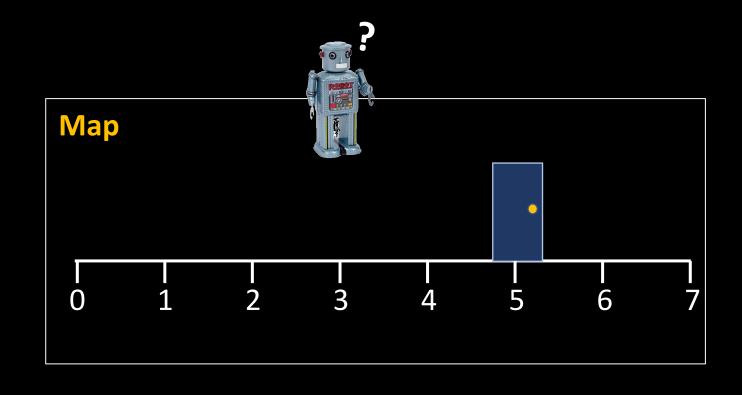
State	0	1	2	3	4	5
p(x ₀)	$\frac{19}{20}$	$\frac{1}{100}$	$\frac{1}{100}$	$\frac{1}{100}$	$\frac{1}{100}$	$\frac{1}{100}$

At t=1, $U_1 = do_nothing$, $Z_1 = door$

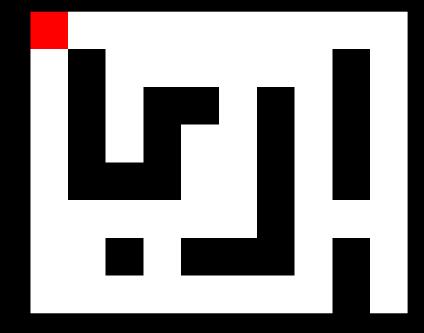
State	0	1	2	3	4	5
p(x ₀)	0	0	0	0	$\frac{1}{3}$	$\frac{2}{3}$

Always believe, even if just a little, in the improbable! (deterministic approaches are fragile!)

- Bayes with beans
 - World
 - 1D continuous robot world
 - Discretized into 7 states
 - ...with a door at state 5
 - Motion model
 - 80% correct, 20% fails
 - Sensor model
 - 90% correct, 10% fails
 - Initial belief
 - Take an action: +1
 - Take a sensor reading: door!



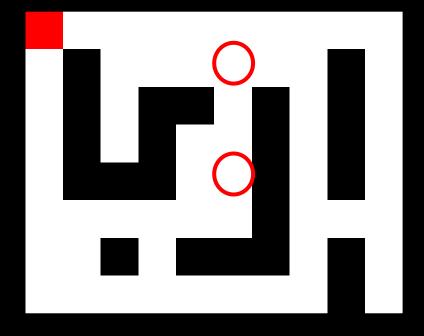
- 8x10 discrete world
 - Known map with obstacles and walls
- Robot state
 - Location in the map (no orientation)
 - Initial state is (0,0)



X is the set of possible locations x is one of these locations

- Transition model
 - No matter what I tell my robot to do, it makes a random move or stays in place!
 - E.g.

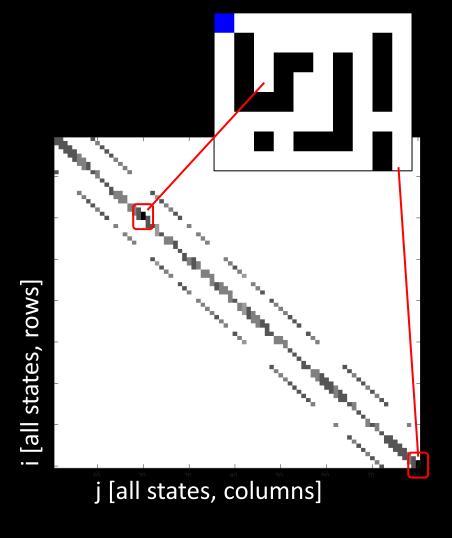
	1/5			1/4
1/5	1/5	1/5	1/4	1/4
	1/5			1/4



X is the set of possible locations x is one of these locations

- Transition model
 - No matter what I tell my robot to do, it makes a random move or stays in place!
 - Transition matrix, A
 - Probability to move from state j to state i

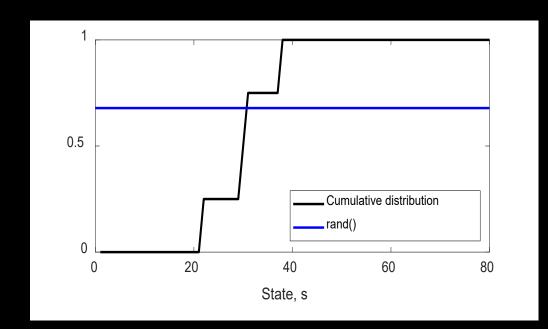
	1/5			1/4
1/5	1/5	1/5	1/4	1/4
	1/5			1/4

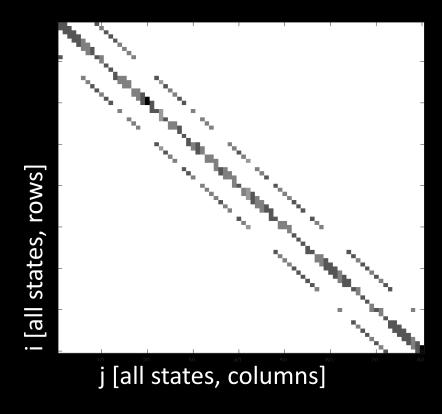


- Practical implementation
 - Set up our world
 - Compute the transition matrix, A
 - Take actions

Fast Robots

- Cumulative distribution
- find(Mtri*A*s >= rand(),1,'first');





Prediction step

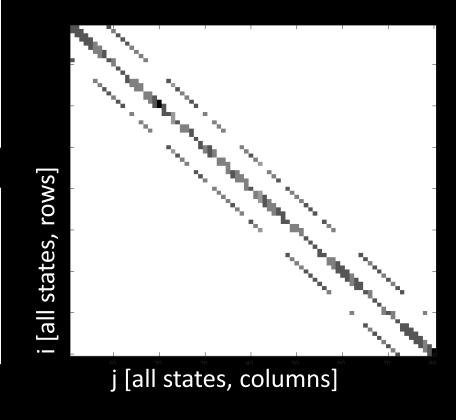
Prediction step ($bel(x_{t-1}), u_t$):

- 1. for all x_t do
- 2. $\overline{bel}(x_t) = \sum_{x_{t-1}} p(x_t | y_t, x_{t-1}) bel(x_{t-1})$
- 3. endfor

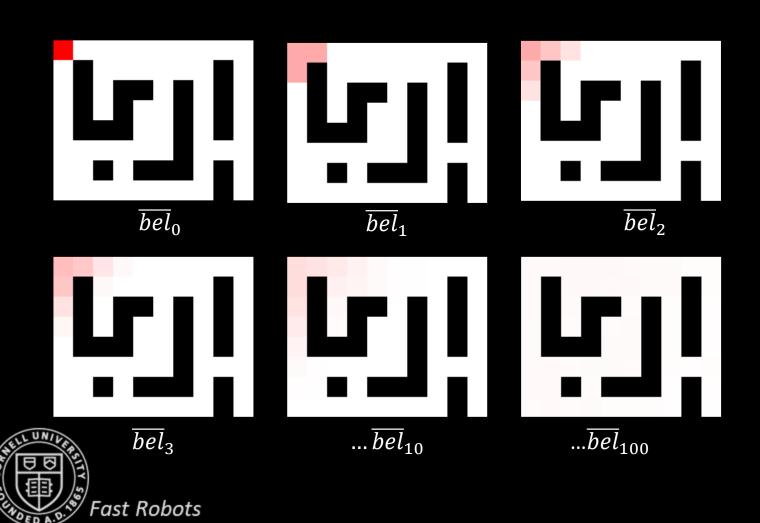
Matrix implementation

1. $\overline{bel} = A bel_{t-1}$

...where A is the transition matrix (80x80) and bel is the probability distribution over all states (80x1)

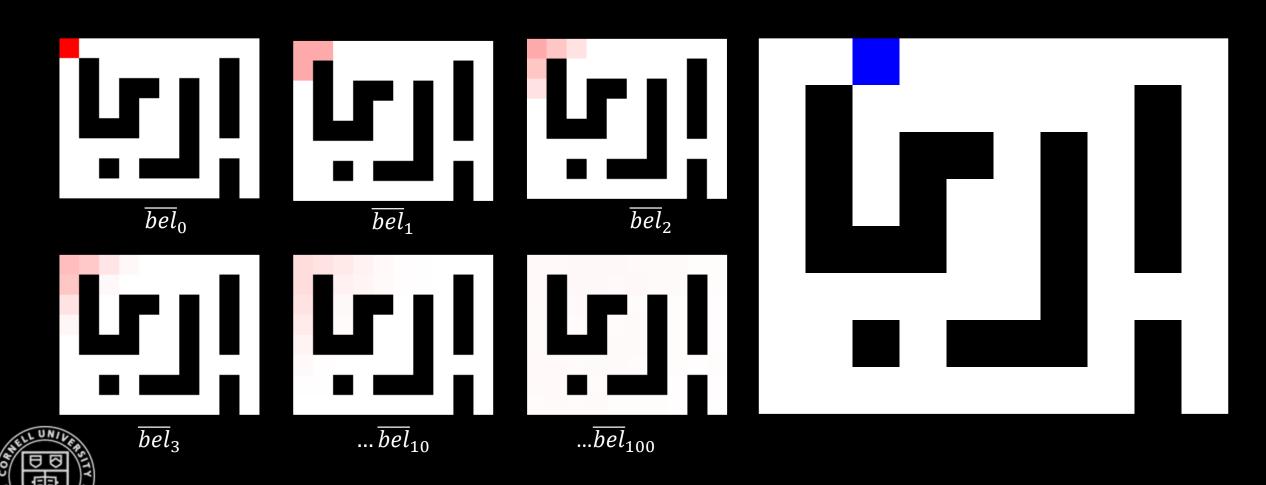


Prediction step

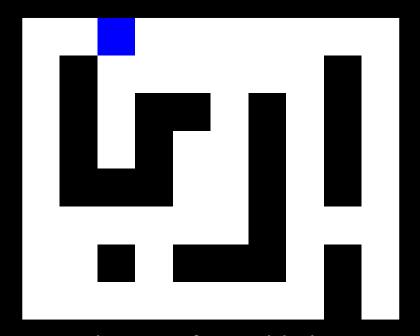


Fast Robots

- The robot may not know where it is, but it does have a physical state
- And it will have observations tied to that state



- Observation model
 - In every time step, we sense each of the four neighboring cells [N, E, S, W]
 - In z, each reading is independent and correct with 90% probability



X is the set of possible locationsx is one of these locationsz are the sensor measurements

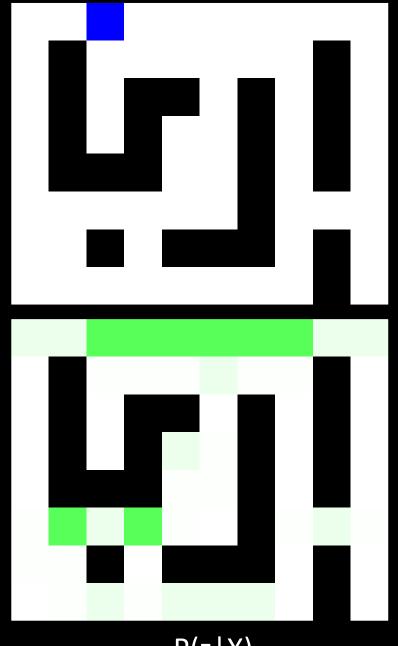
- Observation model
 - In every time step, we sense each of the four neighboring cells [N, E, S, W]
 - In z, each reading is independent and correct with 90% probability

```
• P(no walls | x) = 0.1*0.9*0.9*0.9
```

```
• P(N | x) = 0.9*0.9*0.9*0.9  highest
• P(W | x) = 0.1*0.9*0.9*0.1 likelihood
```

- P(S | x) = 0.1*0.9*0.1*0.9
- P(E | x) = 0.1*0.1*0.9*0.9
- •
- P(NW | x) = 0.9*0.9*0.9*0.1
 - How many combinations are there per state?
 - 2⁴

Fast Robots



- Observation model
 - In every time step, we sense each of the four neighboring cells [N, E, S, W]
 - In z, each reading is independent and correct with 90% probability

Algorithm Bayes_Filter $(bel(x_{t-1}), u_t, z_t)$:

- 1. for all x_t do
- 2. $\overline{bel}(x_t) = \sum_{x_{t-1}} p(x_t|u_t, x_{t-1}) bel(x_{t-1})$
- 3. $bel(x_t) = \eta p(z_t|x_t) \overline{bel}(x_t)$
- 4. endfor

5. return $bel(x_t)$

- If all readings are correct:
 - $\sum |z_t z'_{xt}| = 0$
 - $p_z(x_t) = 0.6561$
- If all readings are wrong:
 - $| \bullet \quad \sum |z_t z'_{xt}| = 4$
 - $p_z(x_t) = 0.0001$

Compute likelihood of observations, p_{zX}

- 1. for all x_t do
- 2. $p_{zX}(x_t) = 0.9^{4-\sum |z_t-z'_{xt}|} 0.1^{\sum |z_t-z'_{xt}|}$
- 3. Endfor

...where p_{zX} is a vector (80x1)

- Observation model
 - In every time step, we sense each of the four neighboring cells [N, E, S, W]
 - In z, each reading is independent and correct with 90% probability

Algorithm Bayes_Filter $(bel(x_{t-1}), \overline{u_t}, \overline{z_t})$:

- 1. for all x_t do
- 2. $\overline{bel}(x_t) = \sum_{x_{t-1}} p(x_t | u_t, x_{t-1}) bel(x_{t-1})$
- 3. $bel(x_t) = \eta p(z_t|x_t) \overline{bel}(x_t)$
- 4. endfor

5. return $bel(x_t)$

Compute new belief

1.
$$bel_t = p_{zx} \overline{bel} / \sum (p_{zx} \overline{bel})$$

...where \overline{bel} is a vector (80x1) and p_{zx} is a vector (80x1)

Bayes Filter

Algorithm Bayes_Filter(bel_{t-1}, z_t):

1.
$$\overline{bel} = A bel_{t-1}$$

2. for all x_t do

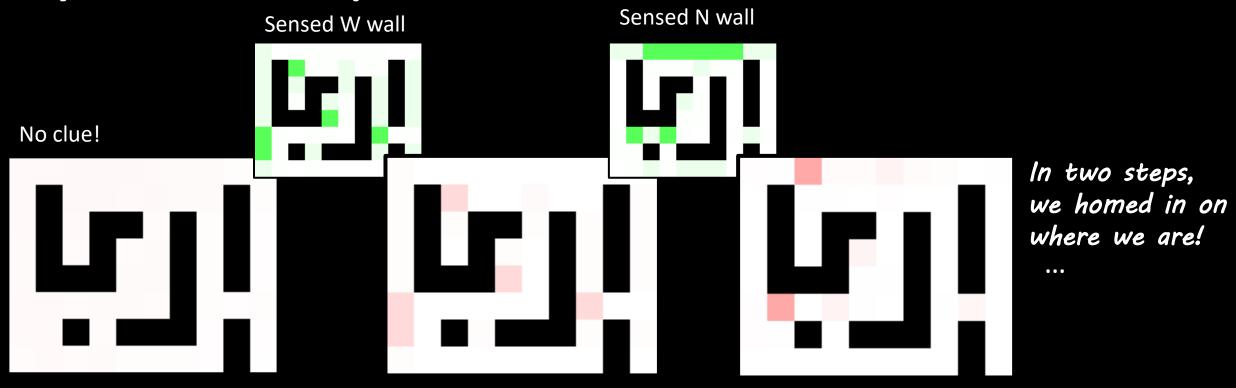
3.
$$p_{zx}(x_t) = 0.9^{4-\sum |z_t - z'_{xt}|} 0.1^{\sum |z_t - z'_{xt}|}$$

4. end for

5.
$$bel_{t} = \overline{bel} p_{zX} / \sum (\overline{bel} p_{zX})$$

Only do computations for states with a belief > threshold

Precache and look up for faster operation



- · How good is the Bayes Filter?
- · Can you do better?

Fast Robots

- Improved transition model
- Deliberately move in directions that give you more information

Bayes Filter II

Algorithm Bayes_Filter ($bel(x_{t-1}), u_t, z_t$): 1. for all x_t do 2. $\overline{bel}(x_t) = \sum_{x_{t-1}} p(x_t|u_t, x_{t-1}) \ bel(x_{t-1})$ [Prediction Step] 3. $bel(x_t) = \eta \ p(z_t|x_t) \ \overline{bel}(x_t)$ [Update/Measurement Step] 4. endfor

- Example 1
 - Robot in a 1D world
 - The importance of having some belief in all states
- Example 2

Fast Robots

- Bayes with beans
- The importance of normalization

return $bel(x_t)$

- Example 3
 - (x,y)-robot in a grid world
 - Computational efficiency
 - Matrices
 - Pre-cache observations

Summary

- Use temporal consistency between observations that are poor estimates individually
- Localization can work with...
 - ...completely random motion
 - ...noisy sensors
 - Remember to...
 - Don't be deterministic
 - Normalize
 - Efficient computation

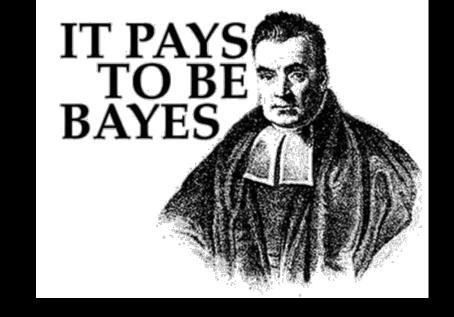
Algorithm Bayes_Filter ($bel(x_{t-1}), u_t, z_t$):

1. for all x_t do

2.
$$\overline{bel}(x_t) = \sum_{x_{t-1}} p(x_t | u_t, x_{t-1}) \ bel(x_{t-1})$$

3.
$$bel(x_t) = \eta p(z_t|x_t) \overline{bel}(x_t)$$

- 4. endfor
- 5. return $bel(x_t)$



ECE 4160/5160 MAE 4910/5910

Fast Robots

Flipped Classroom 4/13/23 (*Thursday!*)

Please install the simulator

https://cei-lab.github.io/FastRobots-2023/FastRobots-Sim.html

