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LAB 9 - Mapping

* Objective: Generate map using your robot and ToF sensor
* Strategy: Place your robot in (at least) 4 marked positions
on the floor and spin while taking measurements.
* Control:
 Open loop
* Orientation control
* Angular speed control
» Sanity check: Polar plot, repeated polar plots
* Scatter plot: Use the transformation matrix
e Convert to a line-based map

 Great example from 2022
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Bayes Filter Il

Algorithm Bayes_Filter (bel(x;_1), u;,2;):

1. for all x; do

2. bel(x,) = Y,y Pxe|ug, xe—q1) bel(xi_q) [ Prediction Step ]
3. bel(x,) = np(z¢|x;) bel(x,) [ Update/Measurement Step ]
4, endfor

5. return bel(x;)

e Example 1
* Robotina 1D world
 The importance of having some belief in all states
 Example 2
* Bayes with beans
* Remember to normalize!
Fast Robots >

* Example 3
* (x,y)-robotin a grid world
 Computational efficiency
* Matrices
* Pre-cache observations




Bayes Filter - Example 1

p(x|z) = 7
P (Z=door| X=5)= 0.5 I | | | |
P (Z=door| X=4)= 0.25 0 1 2 3 4
P (Z=door| X=3)= 0 Map
% os p(x+1llx, u=+1l) = 0.5
X x, u=+1) = 0.5
5 005 5 P ( | )
p(x-1|x, u=-1) = 0.5
I I

Motion Model




Bayes Filter - Example 1

At t = 0, no information

N N N N R N

o S O A
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Bayes Filter - Example 1

At t = 0, no information

T N N I R

p(%,) 1 1 1 1 1 1
6 6 6 6 6 6

Att=1, U; = do_nothing, Z, = door

N I T N N R N

Do we have to do the prediction step?
Do the update step!




Bayes Filter - Example 1

At t = 0, no information

¢ p(x,)
Dorissy Fast Hobe



Bayes Filter - Example 1

Att=1, U; = do_nothing, Z, = door

N T N N R R

p(x,) 1 E
3 3

Att=2,U,= -1

S N N N N R R

e A S O O
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Bayes Filter - Example 1

Att=1, U; = do_nothing, Z, = door
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Bayes Filter - Example 1

Att=2,U, = -
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Bayes Filter - Example 1

Att=1, U; = do_nothing, Z, = door




Bayes Filter - Example 1 (initial conditions 1)

At t=0, we are absolutely certain the robot is at state X, = 0

N N N N N

EXCSN I I A A N
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Bayes Filter - Example 1 (initial conditions 1)
[ ]

At t=0, we are absolutely certain the robot is at state X, = 0

N R N N N

ECSH I B B B R O

Att=1,U,; = do_nothing, Z; = door

N N N NN N
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Bayes Filter - Example 1 (initial conditions 1)
[ ]

At t=0, we are absolutely certain the robot is at state X, = 0

N R N N N

ECSH I B B B R O

Att=1,U,; = do_nothing, Z,; = door

N N N N N
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Bayes Filter - Example 1 (initial conditions 2)
[ ]

At t=0, we are “absolutely” certain the robot is at state X; = 0

State 1 2

p(%,) 19 1 1 1 1 1
20 100 100 100 100 100

Att=1, U, = do_nothing, Z; = door

S N N N N S N
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Bayes Filter - Example 1 (initial conditions 2)
[ ]

At t=0, we are “absolutely” certain the robot is at state X; = 0

State 1 2

p(X,) 19 1 1 1 1 1
20 100 100 100 100 100
Att=1, U, = do_nothing, Z; = door
T N N R N
(%) ¢ %
3 3

Always believe, even if just a little, in the improbable!
(deterministic approaches are fragile!)
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Bayes Filter — Example 2

* Bayes with beans
 World
e 1D continuous robot world
* Discretized into 7 states
e ..with adoor at state 5
* Motion model

Example adapted from Prof. Fred Martin at Umass

e 80% correct, 20% fails

* Sensor model Map
e 90% correct, 10% fails

* Initial belief

 Take an action: +1 |

* Take a sensor reading: door! 0

19



Bayes Filter — Example 3

e 8x10 discrete world
* Known map with obstacles and walls
e Robot state

e Location in the map (no orientation)
* |Initial state is (0,0)

X is the set of possible locations
x is one of these locations

Fast Robots 20



Bayes Filter — Example 3

* Transition model
* No matter what | tell my robot to do, it makes a
random move or stays in place!

* E.g.

X is the set of possible locations
x is one of these locations

Fast Robots 21



Bayes Filter — Example 3

* Transition model
* No matter what | tell my robot to do, it makes a

random move or stays in place!

* Transition matrix, A
* Probability to move from state j to state i

i [all states, rows]

j [all states, columns]

22
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Bayes Filter — Example 3

* Practical implementation
e Set up our world
 Compute the transition matrix, A

 Take actions

e Cumulative distribution
e find(Mtri*A*s >= rand(),1,'first');

i [all states, rows]

— Cumulative distribution

rand() j [all states, columns]

40

State, s
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Bayes Filter — Example 3

* Prediction step

Prediction step (bel(x;_1),15):

1. forallx; do

2. bel(x;) = Xx,_, P(Xelug xe—1) bel(xe—y)
3. endfor

Matrix implementation

1. bel = A bel,_,
..Where A is the transition matrix (80x80) and bel is the
probability distribution over all states (80x1)

i [all states, rows]

j [all states, columns]

24
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Bayes Filter — Example 3

* Prediction step

bel, bel, bel,

bello bel100




Bayes Filter — Example 3

 The robot may not know where it is, but it does have a physical state

=4Lr ]

e And it will have observations tied to that state

bel, bel, bel,

bello bel100




Bayes Filter — Example 3

* Observation model
* In every time step, we sense each of the four
neighboring cells [N, E, S, W]
* Inz, eachreading is independent and correct
H

with 90% probability

X is the set of possible locations
x is one of these locations
z are the sensor measurements

Fast Robots 27



Bayes Filter — Example 3

* Observation model
* In every time step, we sense each of the four
neighboring cells [N, E, S, W]
* Inz, eachreading is independent and correct
with 90% probability

* P(no walls | x) =0.1*0.9*0.9*0.9

* P(N | X) = 0.9%0.9%0.9*0.9 n_ highest
e P (W | x) = 0.1%0.9*0.9*%0.1 likelihood
* P (S | x) = 0.1*0.9*%0.1*0.9

* P(E | x) = 0.1*0.1*0.9*%0.9

* P(NW | x) = 0.9%0.9*%0.9*0.1

* How many combinations are there per state?
¢ 24

P(z|X)
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Bayes Filter — Example 3

* Observation model
* In every time step, we sense each of the four
neighboring cells [N, E, S, W]
* Inz, eachreading is independent and correct
with 90% probability

Algorithm Bayes_Filter (bel(x;_1),u; ,z;):

1. | forall x; do

2. @(xt) = Dxp_y P(XelUp x¢—1) bel(xi_q)
3. bel(x;) = 1 p(zlx,)| bel(x,)
4., endfor

5.return bel(x;)

* If all readings are correct:
* 2lzi —zy| =0
p,(x:)=0.6561

e If all readings are wrong:
o 2lzi —zy| =4
p,(x:)=0.0001

Compute likelihood of observations, p
1. forall x; do

2. px(x) = 09* Bzl 01Xzl
3. Endfor

...where p, is a vector (80x1)

Fast Robots
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Bayes Filter — Example 3

* Observation model
* In every time step, we sense each of the four
neighboring cells [N, E, S, W]
* Inz, eachreading is independent and correct
with 90% probability

Algorithm Bayes_Filter (bel(x;_1),u; ,z;):

1. | forall x; do

2. bel(x,) = Yy Pxelue, xe—q1) bel(xi_q) Compute new belief

3. bel(x,) = 1 p(z|x,)| bel(x,) 1. bel, = p,y bel / (p,x bel)

4. endfor ..where bel is a vector (80x1)
5.return bel(x;) and p, is a vector (80x1)

30
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Bayes Filter — Example 3

* Bayes Filter

Algorithm Bayes_Filter(bel;_4, z;):

1. bel = Abel,_,

2. for all x; do

3. puy(x) = 0.9* Zlz 7] 012177l
4. end for

5. bel, = belp, /¥(belp,y)

31



Bayes Filter — Example 3

Sensed W wall Sensed N wall

No clue!

pdH

we homed in on
where we are!
H J B J J

* Improved transition model
 Deliberately move in directions that give you more information

Fast Robots 32



Bayes Filter Il

Algorithm Bayes_Filter (bel(x;_1), u;,2;):

1. for all x; do

2. bel(x,) = Y,y Pxe|ug, xe—q1) bel(xi_q) [ Prediction Step ]
3. bel(x,) = np(z¢|x;) bel(x,) [ Update/Measurement Step ]
4, endfor

5. return bel(x;)

e Example 1
* Robotina 1D world
 The importance of having some belief in all states
 Example 2
* Bayes with beans
 The importance of normalization
Fast Robots 33

* Example 3
* (x,y)-robotin a grid world
 Computational efficiency
* Matrices
* Pre-cache observations




Summary

* Use temporal consistency between
observations that are poor estimates
individually

e Localization can work with...

e ...completely random motion
* ...NOISy sensors
* Remember to...

 Don’t be deterministic

* Normalize

» Efficient computation

Fast Robots

Algorithm Bayes_Filter (bel(x;_1), us, z;):

1.

2.

3.
4,
5.

for all x; do
E(xt) = Xx,_, P(xelue Xe—1) bel(xp_q)

bel(x;) = 1 p(z¢|xe) E(xt)
endfor

return bel(x;)

IT PAYS/™)
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Flipped Classroom 4/13/23 (Thursday!)
Please install the simulator
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https://cei-lab.github.io/FastRobots-2023/FastRobots-Sim.html
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